Skip to main content
Log in

Photophysical processes in recent medical laser developments: A review

Lasers in Medical Science Aims and scope Submit manuscript

Abstract

A single diagram, encompassing most medical applications for all types of laser in current use, forms the basis of this review of recent medical developments. Emphasis is placed on the physical processes that govern different microscopic mechanisms of laser-tissue interaction. Four distinct photophysical groups are considered in a general classification of these specific modes of interaction: for continuous wave exposure, the photothermal and the photochemical transformations; and, for pulsed irradiations, the electromechanical and the photoablative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Goldman L, Rockwell J, Jr.Lasers in Medicine. New York: Gordon and Breach, 1971

    Google Scholar 

  2. Adey WR. Tissue interactions with nonionizing electromagnetic radiation.Physiol Rev 1981,61:435

    PubMed  CAS  Google Scholar 

  3. Hayes JR, Wolbharsht ML. Models in pathology — mechanisms of action of laser energy with biological tissues. In: Wolbharsht ML (ed)Laser Applications in Medicine and Biology, Vol 1. New York: Plenum, 1975: Chap 1

    Google Scholar 

  4. Pratesi R, Sacchi CA (eds)Lasers in Photomedicine and Photobiology, New York: Springer, 1980

    Google Scholar 

  5. Regan JD, Parrish JA.Science of Photomedicine. New York: Plenum, 1982

    Google Scholar 

  6. Grandolfo M, Michaelson SM, Rindi A (eds)Biological Effects and Dosimetry of Nonionizing Radiation. New York: Plenum, 1983

    Google Scholar 

  7. Parrish JA, Deutsch JF. Laser photomedicine.IEEE (Inst Electr Electron Eng) J Quantum Electron QE 20 1984,12:1386

    Article  Google Scholar 

  8. Kaplan I (ed)Laser Surgery. Jerusalem: Academic, 1976

    Google Scholar 

  9. Spikes JD, Straight R. Sensitized photochemical processes in biological systems.Annu Rev Phys Chem 1967,18:409

    Article  CAS  Google Scholar 

  10. Diamond I, Granelli S, McDonaugh AF. Photodynamic therapy of malignant tumours.Lancet 1973, ii:1177

    Google Scholar 

  11. Dougherty TJ. Photoradiation therapy. Abstr Am Chem Soc Mtg, Chicago Il, September 1973:No 014

  12. Aron-Rosa D, Aron J, Griesemann J, Thyzel R. Use of the Nd: YAG laser to open the posterior capsule after lens implant surgery.J Am Introcul Implant Soc 1980,6:352

    CAS  Google Scholar 

  13. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea.J Ophthalmol 1983,96:710

    CAS  Google Scholar 

  14. Lane RJ, Linsker R, Wynne JJ et al. Ultraviolet-laser ablation of the skin.Lasers Surg Med 19844:201

    PubMed  Google Scholar 

  15. Boulnois JL. A general classification of laser-tissue interactions.Lasers Surg Med 1985:in press

  16. Giese AC (ed)Photophysiology, Vol 6. New York: Academic, 1971

    Google Scholar 

  17. Smith KC. Photobiology of ultraviolet radiation. In: Pratesi R, Sacchi CA (eds)Lasers in Photomedicine and Photobiology. New York: Springer, 1980

    Google Scholar 

  18. Bond JW, Watson KM, Welch JA. In:Atomic Theory of Gas Dynamics. Massachussets: Addison-Wesley Reading, 1965

    Google Scholar 

  19. Parrish JA. New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window;J Invest Dermatol 1981,77:45

    Article  PubMed  CAS  Google Scholar 

  20. Brunetaud JM, Mordon S, Bourez J et al. Therapeutic applications of lasers.Optical Fibers in the Biomedical Field (Proc SPIE 405) May 1985:2

    Google Scholar 

  21. van Gemert MC, Schets GA, Stassen EG, Bonnier JJ. Modelling of coronary laser angioplasty.Lasers Surg Med 19855:219

    PubMed  Google Scholar 

  22. van Gemert MC, de Kleijn WJ, Hulsbergen JP. Temperature behavior of a model portwine stain during argon laser coagulation.Phys Med Biol 1982,27:1104

    Google Scholar 

  23. Welch AJ. The thermal response of laser-irradiated tissue.IEEE (Inst Elec Electron Eng) J Quantum Electron QE 20 1984,12:1471

    Google Scholar 

  24. Mordon S, Brunetaud JM, Mosquet L et al. Effets thermiques des lasers: étude par camera thermique infrarouge.Laser Médical. Opto 82. Paris: Masson 1984:58

    Google Scholar 

  25. L'Espérance FA.Ocular photocoagulation. Saint-Louis: Mosby, 1975

    Google Scholar 

  26. Little HL, Zweng HC, Peabody RR. Argon laser slit lamp retinal photocoagulation.Trans Am Acad Ophthalmol Oto-Laryngol 1970,74:85

    CAS  Google Scholar 

  27. Coscas G. Le laser à krypton en ophtalmologie: premiers essais expérimentaux et cliniques.Bull Mem Soc Fr Ophtalmol 1981,87:100

    Google Scholar 

  28. Karduck B, Richter MG, Blank M. Laserchirurgie des Stimmbandes.Laryngol Rhinol Otol 1978,57:419

    CAS  Google Scholar 

  29. Frêche C, Lotteau J, Abitbol J. Le laser en O.R.L.Concours Med 1979:2607

  30. Toaff R. The CO2 laser in gynecological surgery. In: Kaplan I (ed)Laser Surgery. Jerusalem: Academic 1976

    Google Scholar 

  31. Kiefhaber P, Nath G, Moritz K. Endoscopical control of massive gastrointestinal hemorrhage by irradiation with a high-power neodymium-YAG laser.Prog Surg 1977: 140

  32. Grotelüschen NB, Reilmann M, Bödecker V, Buchholz J. A high power Nd:YAG laser as a cutting tool in experimental surgery. In: Kaplan I (ed)Laser Surgery. Jerusalem: Academic 1976:167

    Google Scholar 

  33. Godlewski G, Miro L, Chevalier JM, Bureau JP. Experimental comparative study on morphological effects of different lasers on the liver.Res Exp Med 1982,180:51

    Article  CAS  Google Scholar 

  34. Bown SG, Salmon PR, Storey DW et al. Nd:YAG laser photocoagulation in the dog stomach.Gut 1980,21:818

    PubMed  CAS  Google Scholar 

  35. Stachler G, Hofstetter A, Gorisch W et al. Endoscopy in experimental urology using argon-laser-beam.Endoscopy 1976,8:1

    PubMed  Google Scholar 

  36. Toty L, Personne C, Colchen A, Vourc'h G. Bronchoscopic management of tracheal lesions using the Nd:YAG laser.Thorax 1981,36:175

    PubMed  CAS  Google Scholar 

  37. Nims TA, McCaughan JS. Clinical experience with CO2 laser vaporisation of neoplasm.Lasers Surg Med 1983,3:265

    PubMed  CAS  Google Scholar 

  38. Oshiro T. In: Oshiro T (ed)Laser treatments for nevi. Med Laser Res Co Ltd. Tokyo: Fukuin Printing Co, 1980

    Google Scholar 

  39. Carruth JAS. The minimal blanching power technique for the treatment of portwine stains with argon lasers. In: The Medical Laser. Present and Future. Second International Congress European Laser Association, Brussels, January 1985

  40. Deutsch TF, Oseroff AR. New medical uses of lasers: a survey. Proc CLEO Baltimore, 1985:paper WF3

  41. Macruz R, Martins JR, Tupinamba A et al. Therapeutic possibilities of laser beams in atheromas.Arq Bras Cardiol 1980,34:9

    PubMed  CAS  Google Scholar 

  42. Choy DS, Sterzer SH, Rotterdam HZ et al. Transluminal laser catheter angioplasty.Am J Cardiol 1982,50:1206

    Article  PubMed  CAS  Google Scholar 

  43. Ginsburg R, Kim DS, Guthaner D et al. Salvage of an ischemic limb by laser angioplasty: description of a new technique.Clin Cardiol 1984,7:54

    Article  PubMed  CAS  Google Scholar 

  44. Abela GS, Cohen D, Feldman RL et al. Use of laser radiation to recanalize arteries in live rabbits.Clin Res 1983,31:458A

    Google Scholar 

  45. Case RB, Choy DS, Dwyer EM, Silvernail PJ. Absence of distal emboli during in vivo laser recanalization.Lasers Surg Med 1985,5:281

    PubMed  CAS  Google Scholar 

  46. Geschwind H, Boussignac G, Tesseire B et al. Percutaneous transluminal laser angioplasty in man.Lancet 1984, i:844

    Article  Google Scholar 

  47. van Gemert M, Verdaasdonk R, Stassen EG et al. Optical properties of human blood vessel wall and plaque.Lasers Surg Med 1985,5:235

    PubMed  Google Scholar 

  48. Berns MW, Mirhoseini M (eds) Special issue: Laser applications to occlusive vascular disease.Laser Surg Med 1985,5:3

    Google Scholar 

  49. Neblett C. History and future of tissue welding. Proc Congress Laser Neurosurg III 1984:64 (abstr)

    Google Scholar 

  50. Jain KK, Gorisch W. Repair of small blood vessels with the ND:YAG laser: a preliminary report.Surgery (St Louis) 1979,85:684

    CAS  Google Scholar 

  51. Krueger RR, Almquist EE. Argon laser coagulation of blood for the anastomosis of small vessels.Lasers Surg Med 1985,5:55

    PubMed  CAS  Google Scholar 

  52. Serure A, Withers WH, Thomsen S, Morris J. Comparison of carbon dioxide laser-assisted microvascular anastomosis and conventional microvascular sutured anastomosis.Surg Forum 1983,34:634

    Google Scholar 

  53. Lynne C, Carter M, Morris J et al. Laser-assisted vas anastomosis: a preliminary report.Lasers Surg Med 1983,3:261

    PubMed  CAS  Google Scholar 

  54. Quingley MR, Bailes J, Kwaan HC et al. Microvascular anastomosis using the milliwatt CO2 laser.Lasers Surg Med 1985,5:357

    PubMed  Google Scholar 

  55. Tyrrell RM.Photochem Photobiol Rev 1977,3:35

    Google Scholar 

  56. Meyer HJ, Haverkampf K. Experimental study of partial liver resection with a combined CO2 and Nd: YAG laser.Lasers Surg Med 1982,2:149

    PubMed  CAS  Google Scholar 

  57. Sultan R, Fallouh H, Lefevre-Villardebo M, Ladouch-Badre A. The combined use of Nd:YAG and CO2 lasers as a hemostatic knife in liver surgery. In: The Medical Laser: Present and Future. Second International Congress European Laser Association, Brussels, January 1985

  58. Lasers Appl 1985,4:36, August

  59. Svaasand LO, Doiron DR, Dougherty TJ. Temperature rise during photoradiation therapy of malignant tumors.Med Phys 198310:10

    Article  PubMed  CAS  Google Scholar 

  60. Dougherty TJ. Hematoporphyrin as a photosensitizer of tumors.Photochem Photobiol 1983,38:377

    PubMed  CAS  Google Scholar 

  61. Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor.Cancer Res 1976,36:2316

    Google Scholar 

  62. Bensasson R. La photochimiothérapie par l'hématoporphyrine. Introduction, mécanismes moléculaires. In:Laser Medical, Opto 1982. Paris:Masson, 1984:29

    Google Scholar 

  63. Policard A. Etudes sur les aspects offerts par les tumeurs expérimentales à la lumière de Wood.CR Seances Soc Biol Fil 1924,91:1423

    Google Scholar 

  64. Jori G. The molecular biology of photodynamic action. In: Pratesi R, Sacchi CA (eds)Lasers in Photomedicine and Photobiology. New York: Springer 1980

    Google Scholar 

  65. Andreoni A, Cubeddu A, de Silvestri S et al. Two-step laser activation of hematoporphyrin derivative.Chem Phys Lett 1982,88:37

    Article  CAS  Google Scholar 

  66. Dougherty TJ, Weishaupt KR, Boyle DG. Photodynamic therapy and cancer. In: DeVita VT et al (eds)Principles and Practice of Oncology. Philadelphia J.B. Lippincott, 1985

    Google Scholar 

  67. Moan J. Porphyrin-sensitized photodynamic inactivation of cells, a review.Lasers Med Sci 1986, 1:this volume

  68. Yanmashita M, Sato T, Aizawa K, Kato H. Picosecond fluorescence spectroscopy of hematoporphyrin derivative and related porphyrins. In: Eisenthal KB et al (eds)Picosecond phenomena III. New York: Springer (Springer Ser Chem Phys) 1980:298

    Google Scholar 

  69. Krinsky NI. In: Isler O (ed)Functions of carotenoids. Basel: Birkhauser, 1971:669

    Google Scholar 

  70. Mathews-Roth MM. Beta-carotenotherapy for erythropoietic protoporphyria and other photosensivity diseases, In: Regan JD, Parrish JA (eds)Science of Photomedicine New York: Plenum, 1982

    Google Scholar 

  71. Cowled C, Grace, Forbes. Comparison of the efficacy of pulsed and cw red laser light in induction of phototoxicity by haematoporphyrin derivative.Photochem Photobiol 1984,39:115

    PubMed  CAS  Google Scholar 

  72. Berns MW, Coffey J, Wile AG. Laser photoradiation therapy of cancer: possible role of hyperthermia.Lasers Surg Med 1984,4:87

    PubMed  CAS  Google Scholar 

  73. Waldow SM, Henderson BW, Dougherty TJ. Enhanced tumor control following sequential treatments of photodynamic therapy and localized microwave hyperthermia in vivo.Lasers Surg Med 1984,4:79

    PubMed  CAS  Google Scholar 

  74. Mester E. Laser application in promoting wound healing. In: Koebner MK (ed)Lasers in Medicine. Chichester: Wiley, 1980

    Google Scholar 

  75. Oraevskii AN, Pleshanov PG. Biochemical effect of laser radiation,Sov J Quantum Electron 1981,12:1593

    Google Scholar 

  76. Karu TI, Kalenko GS, Letokhov VS, Labko W. Biological action of low-intensity visible light on HeLa cells as a function of the coherence, dose, wavelength, and irradiation regime.Sov J Quantum Electron 1982,9:1134 and 1983,9:1169

    Google Scholar 

  77. Lasers Appl 1985,4:36, March

  78. Puliafito CA, Steinert RF. Short-pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations.IEEE (Inst Elect Electron Eng) J Quantum Electron 20 1984,12:1442

    Article  Google Scholar 

  79. Fradin DW, Bloembergen N, Letellier JP. Dependence of laser-induced breakdown field strength on plasma duration.Appl Phys Lett 1973,22:635

    Article  CAS  Google Scholar 

  80. Steinert RF, Puliafito CA, Trokel S. Plasma formation and shielding by three Nd:YAG lasers.Am J Ophthalmol 198396:427

    PubMed  CAS  Google Scholar 

  81. Smith DC, Haught AF. Energy-loss processes in optical frequency gas breakdown.Phys Rev Lett 1966,16:1085

    Article  CAS  Google Scholar 

  82. Mitsak V, Saveskin V, Chernikiv V. Breakdown at optical frequencies in the presence of diffusion losses.JETP Lett 1966,4:88

    Google Scholar 

  83. Krokhin ON. Generation of high-temperature vapors and plasmas by laser radiation. In: Arecchi FT, Schulzdu-Bois EO (eds)Laser Handbook, Vol 2. Amsterdam: North-Holland 1972: 1371

    Google Scholar 

  84. Smith DC, Meyerand RG. Laser radiation induced gas breakdown. In: Bekefi G (ed)Principles of Laser Plasmas. Chichester: Wiley, 1976: 457

    Google Scholar 

  85. Sedov LI.Similarity and Dimensional Methods in Mechanics, Gostekhizadt. 4th edn, Moskow, 1957 (English Translation, Holt M (ed) New York: Academic Press, 1959)

    Google Scholar 

  86. Steinert RF, Puliafito CA, Kittrell C. Plasma shielding by Q-switched and mode-locked ND:YAG lasers.Ophthalmology 1983,90:1003

    PubMed  CAS  Google Scholar 

  87. Bekefi G. Radiation Processes in Plasmas. New York: Wiley, 1966

    Google Scholar 

  88. Aron-Rosa D, Griesemann JC, Aron JJ. Use of a pulsed neodymium-YAG laser (picosecond) to open the posterior lens capsule in traumatic cataract: a preliminary report.Surgery (St Louis) 1981,12:496

    CAS  Google Scholar 

  89. Fankhauser F, Roussel P, Steffen J et al. Clinical studies on the efficiency of high power laser radiation upon some structures of the anterior segment of the eye.Int Ophthalmol 1981,3:129

    PubMed  CAS  Google Scholar 

  90. Mayer G, Astier R, Englender J et al. Recanalization ‘invitro’ of atheromatous coronary arteries by short laser pulses. In: The Medical Laser: Present and Future. Second International Congress European Laser Association, Brussels January 1985

  91. Berns MW, Gaster RN. Comeal incisions produced with the 4th harmonic (266 nm) of the Nd:YAG laser.Lasers Surg Med 1985,5:371

    PubMed  CAS  Google Scholar 

  92. Srinivasan R, Mayne-Benton V, Self-developing photoetching of polyethylene terephthalate films by far-ultraviolet excimer laser radiation.Appl Phys Lett 1982,41:576

    Article  CAS  Google Scholar 

  93. Deutsch TF, Geis MW. Self-developing UV photoresist using excimer laser exposure.J Appl Phys 1983,54:7201

    Article  CAS  Google Scholar 

  94. Srinivasan R, Braren B, Seeger D et al. Comparative study of the photochemistry and the cutting (etching) of a synthetix polymer and bovine cornea by excimer radiation. Proc CLEO Baltimore, 1985: paper WL2

  95. Rahman NK. Laser-induced photodissociation. (Colloque C1 in Collisions in a Laser Field)J Phys 1985,46:249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulnois, JL. Photophysical processes in recent medical laser developments: A review. Laser Med Sci 1, 47–66 (1986). https://doi.org/10.1007/BF02030737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02030737

Key words

Navigation