Advertisement

Lasers in Medical Science

, Volume 1, Issue 1, pp 33–39 | Cite as

A 580 nm emission in haematoporphyrin-derivative solution and in treated cells

  • G. Bottiroli
  • F. Docchio
  • R. Ramponi
  • C. A. Sacchi
  • R. Supino
Article

Abstract

Continuous wave and time-resolved fluorescence microscopy have been extensively used to characterize the behaviour of haematoporphyrin derivative (HPD) both in solution and in single cells. In this work, we report experimental evidence for the presence of a 580 nm-emitting species, occurring as a consequence of modifications in HPD induced by the cellular microenvironment. The fact that the formation of this ‘modified’ species seems to be favoured in tumour cells might increase sensitivity in the diagnostic use of HPD for the localization of early-stage tumours.

Key words

Haematoporphyrin derivative 580 nm emission Time-resolved fluorescence microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Profio AE, Doiron DR, King EG. Laser fluorescence bronchoscope for localization of occult lung tumors.Med Phys 1979,6:523–30CrossRefPubMedGoogle Scholar
  2. 2.
    Dougherty TJ, Kaufman JE, Goldfarb A et al. Photoradiation therapy for the treatment of malignant tumors.Cancer Res 1978,28:2628–35Google Scholar
  3. 3.
    Lipson RL, Baldes EJ, Olsen AM. The use of hematoporphyrin in tumor detection.J Natl Cancer Inst 1961,26:1–8PubMedGoogle Scholar
  4. 4.
    Berns MW, Wilson M, Rentzepis P et al. Cell biology of hematoporphyrin-derivative (HpD).Lasers Surg Med 1983,2:261–6PubMedGoogle Scholar
  5. 5.
    Van der Putten WJM, Van Gemert MJC. Haematoporphyrin-derivative fluorescence in vitro and in an animal tumor.Phys Med Biol 1983,28:633–8PubMedGoogle Scholar
  6. 6.
    Sutherland R, Carlsson J, Duran R, Yuhas J. Spheroids in cancer research.Cancer Res 1981,41:2980–4Google Scholar
  7. 7.
    Docchio F, Ramponi R, Sacchi CA et al. An automatic pulsed laser microfluorometer with high spatial and temporal resolution.J Microsc (Oxf) 1984,134:151–60Google Scholar
  8. 8.
    Margalit R, Shaklai N, Cohen S. Fluorimetric studies on the dimerization equilibrium of protoporphyrin IX and its haemato derivative.Biochem J 1983,209:547–52PubMedGoogle Scholar
  9. 9.
    Andreoni A, Cubeddu R. Properties of the blue-shifted emission of hematoporphyrin and related derivatives in aqueous solution.Chem Phys Lett 1983,100:503–7Google Scholar
  10. 10.
    Bottiroli G, Freitas I, Docchio F et al. Towards a better understanding of the mechanism of action of hematoporphyrin derivative at the cellular level.Proceedings of the 13th International Cancer Congress, Seattle, 1982:236Google Scholar
  11. 11.
    Bottiroli G, Freitas I, Docchio F et al. The time-dependent behaviour of hematoporphyrin-derivative in saline: a study of spectral modifications.Chem Biol Interact 1984,49:1–11CrossRefPubMedGoogle Scholar
  12. 12.
    Sommer S, Rimington C, Moan J. Formation of metal complex of tumor-localizing porphyrins.FEBS (Fed Eur Biochem Soc) Lett 1984,172:267–71CrossRefGoogle Scholar
  13. 13.
    Ricchelli F, Grossweiner LI. Properties of a new state of hematoporphyrin in dilute aqueous solution.Photochem Photobiol 1984,40:599–606PubMedGoogle Scholar
  14. 14.
    Bottiroli G, Docchio F, Freitas I et al. Spectroscopic studies of hematoporphyrin-derivative in culture medium.Chem Biol Interact 1984, 50:153–7CrossRefPubMedGoogle Scholar
  15. 15.
    Cubeddu R, Ramponi R, Bottiroli G. Zinc metalation of hematoporphyrin and its derivative in different environmental conditions.Stud Biophys 1985,3:185–91Google Scholar
  16. 16.
    Docchio F, Ramponi R, Sacchi CA et al. Time-resolved fluorescence spectroscopy of hematoporphyrin-derivative in human lymphocytes.Chem Biol Interact 1984,50:135–41PubMedGoogle Scholar
  17. 17.
    Bottiroli G, Freitas I, Docchio F et al. Uptake process of hematoporphyrin derivative: its dependence on the cell functional state.Med Biol Environ 1982,10:343–8Google Scholar
  18. 18.
    Mossman BT, Gray MJ, Silberman L, Lipson L. Identification of neoplastic versus normal cells in human cervical cell culture.Obstet Gynecol 1974,43:635–9PubMedGoogle Scholar
  19. 19.
    Moan J, Steen HB, Feren K, Christensen T. Uptake of hematoporphyrin derivative and sensitized photo-inactivation of C3H cells with different oncogenic potential.Cancer Lett 1981,14:291–6CrossRefPubMedGoogle Scholar
  20. 20.
    Kreimer-Birnbaum M, Bauman JL, Klaunig JE et al. Chemical studies with hematoporphyrin derivative in bladder cell lines. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Alan R Liss, 1984:335–50Google Scholar
  21. 21.
    Ambesi-Impiombato FS, Andreoni A, Cubeddu R et al. Effects of HpD and laser on transformed and corresponding normal cultured cells: differential cytotoxicity as an in vitro model for tumor photochemotherapy. In: Andreoni A, Cubeddu R (eds)Porphyrin in tumor phototherapy New York: Plenum, 1984:143–55Google Scholar
  22. 22.
    Docchio F, Ramponi R, Sacchi CA et al. Time-resolved fluorescence microscopy of hematoporphyrin-derivative in cells.Lasers Surg Med 1982,2:21–8PubMedGoogle Scholar
  23. 23.
    Spikes JD, Bommer JC, Bumham BF. Preliminary studies on metallo-uroporphyrin as photodynamic sensitizers.Photochem Photobiol 1985:41 (suppl):56SGoogle Scholar

Copyright information

© Baillière Tindall 1986

Authors and Affiliations

  • G. Bottiroli
    • 1
  • F. Docchio
    • 1
    • 2
  • R. Ramponi
    • 1
    • 2
  • C. A. Sacchi
    • 1
    • 2
  • R. Supino
    • 1
    • 3
  1. 1.Dipartimento di Biologia Animale dell'UniversitàCentro di Studio per l'Istochimica del C.N.R.PaviaItaly
  2. 2.Istituto di Fisica, Politecnico di MilanoCentro di Studio per l'Elettronica Quantistica e la Strumentazione Elettronica del C. N. R.Italy
  3. 3.Istituto Nazionale per lo Studio e la Cura dei TumoriMilanoItaly

Personalised recommendations