Advertisement

Optical and Quantum Electronics

, Volume 19, Issue 3, pp 145–168 | Cite as

Statistics of coherently detected backscatter and range performance of coherent OTDRs

  • R. M. Howard
Article

Abstract

We derive the statistics of a coherently detected backscatter waveform taking into account the effects of polarization. For the first time these statistics are related to measurable parameters. We show that for long-range OTDRs the effects of polarization are statistically small.

In relation to the demodulation process we used our statistical model to show that for long-range operation and with heterodyne detection all types of demodulation provide similar performance. With homodyne detection half-wave demodulation results in a 7 dB lower signal-to-noise ratio than the other types of demodulation which have similar performance. There is the usual 3 dB advantage of homodyne over heterodyne detection. Our results indicate that with the same launched powers, the signal obtained from a coherent OTDR can have up to a 37 dB better signal-to-noise ratio than one obtained from an incoherent pulse OTDR. This results in a 9 dB range advantage.

We verify previously tabulated results which we found apply only for short-range operation. We use our model to predict the limits of long-range performance and to predict the effect of speckle on averaging. Finally, we explain the breakpoint behaviour that can be seen in results already reported and which is characteristic of linear full- or half-wave envelope demodulation.

Keywords

Statistical Model Communication Network Measurable Parameter Similar Performance Range Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. L. DANIELSON,Appl. Opt. 24 (1985) 2313.Google Scholar
  2. 2.
    P. HEALEY and D. J. MALYON,Electron. Lett. 18 (1982) 862.Google Scholar
  3. 3.
    E. BODTKER, B. TROMBORG, J. MARK and C. J. NIELSEN,ibid. 19 (1983) 361.Google Scholar
  4. 4.
    S. WRIGHT, K. RICHARDS, S. K. SALT and E. WALLBANK, 9th European Conference on Optical Communication, Geneva (1983) pp. 177–180.Google Scholar
  5. 5.
    R. E. EPWORTH, D. F. SMITH and S. WRIGHT, 10th European Conference on Optical Communication, Stuttgart (September 1984) pp. 132–133.Google Scholar
  6. 6.
    S. WRIGHT, R. E. EPWORTH, D. F. SMITH and J. P. KING, 2nd Optical Fibre Sensor Conference, Stuttgart (September 1984) pp. 347–350.Google Scholar
  7. 7.
    D. F. SMITH, S. WRIGHT, R. E. EPWORTH and J. P. KING, Technical Digest of the IEE Colloquium on Advances in Coherent Optic Devices and Technologies (March 1985) pp. 17/1–17/4.Google Scholar
  8. 8.
    J. P. KING and S. WRIGHT, Technical Digest of the IEE Colloquium on Advances in Coherent Optic Devices and Technologies (March 1985) pp. 15/1–15/5.Google Scholar
  9. 9.
    P. HEALEY, R. C. BOOTH, B. E. DAYMOND-JOHN and B. K. NAYAR,Electron. Lett. 20 (1984) 360.Google Scholar
  10. 10.
    P. HEALEY,ibid. 20 (1984) 30.Google Scholar
  11. 11.
    Idem, ibid. 20 (1984) 443.Google Scholar
  12. 12.
    Idem, ibid. 21 (1985) 226.Google Scholar
  13. 13.
    Idem, Technical Digest of the IEE Colloquium on Advances in Coherent Optic Devices and Technologies (March 1985) pp. 14/1–14/7.Google Scholar
  14. 14.
    R. M. HOWARD, J. L. HULLETT and R. D. JEFFERY,Opt. Quantum Electron. 18 (1986) 291.Google Scholar
  15. 15.
    R. A. HARMON,Electron. Lett. 18 (1982) 1058.Google Scholar
  16. 16.
    E. BRINKMEYER,J. Opt. Soc. Am. 70 (1980) 1010.Google Scholar
  17. 17.
    B. Y. KIM and S. S. CHOI,Opt. Lett. 6 (1981) 578.Google Scholar
  18. 18.
    E. BRINKEMEYER,ibid. 6 (1981) 575.Google Scholar
  19. 19.
    B. Y. KIM and S. S. CHOI,Electron. Lett. 17 (1981) 193.Google Scholar
  20. 20.
    V. RAMASWAMY, R. D. STANDLEY, D. SZE and W. G. FRENCH,Bell Syst. Tech. J. 57 (1978) 635.Google Scholar
  21. 21.
    A. YARIV, ‘Introduction to Optical Electronics’ (Holt, Rinehart and Winston, 1976) Ch. 11.Google Scholar
  22. 22.
    M. C. TEICH,Appl. Phys. Lett. 14 (1969) 201.Google Scholar
  23. 23.
    M. NAKAZAWA,J. Opt. Soc. Am. 73 (1983) 1175.Google Scholar
  24. 24.
    R. LOUDON, ‘The Quantum Theory of Light’ (Clarendon, Oxford 1973) p. 262.Google Scholar
  25. 25.
    P. B. GALLION and G. DEBARGE,IEEE J. Quantum Electron. 20 (1984) 343.Google Scholar
  26. 26.
    C. H. HENRY,ibid. 18 (1982) 259.Google Scholar
  27. 27.
    K. THYAGARAJAN and A. K. GHATAK, ‘Lasers: Theory and Application’ (Plenum, 1981) Chs 3 and 6.Google Scholar
  28. 28.
    O. SVELTO, ‘Principles of Lasers’ (Plenum, 1982) Ch. 2.Google Scholar
  29. 29.
    S. C. RASHLEIGH,IEEE J. Lightwave Technol. T-1 (1983) 862.Google Scholar
  30. 30.
    O. D. GRACE,J. Acoustic. Soc. Am. 69 (1981) 191.Google Scholar
  31. 31.
    P. HEALEY,IEEE J. Lightwave Technol. LT-3 (1985) 876.Google Scholar
  32. 32.
    A. PAPOULIS, ‘Probability, Random Variables and Stochastic Processes’ (McGraw-Hill, 1965) pp. 481–483.Google Scholar
  33. 33.
    P. HEALEY,Opt. Quantum Electron. 16 (1984) 267.Google Scholar
  34. 34.
    M. P. GOLD and A. H. HARTOG,Electron. Lett. 19 (1983) 463.Google Scholar
  35. 35.
    Idem, ibid. 20 (1984) 285.Google Scholar
  36. 36.
    M. P. GOLD,IEEE J. Lightwave Technol. Lt-3 (1985) 39.Google Scholar
  37. 37.
    D. C. CHAMPENEY, ‘Fourier Transforms and their Physical Applications’ (Academic, 1973) pp. 85–87.Google Scholar
  38. 38.
    A. PAPOULIS, ‘Probability, Random Variables and Stochastic Processes’ 2nd Edn (McGraw-Hill, 1984) pp. 145–146.Google Scholar
  39. 39.
    R. LOUDON, ‘The Quantum Theory of Light’ (Clarendon, Oxford, 1973) pp. 99–100; Problem 6–7, p. 147.Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • R. M. Howard
    • 1
  1. 1.Department of Electrical and Electronic EngineeringUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations