Skip to main content
Log in

Statistics of coherently detected backscatter and range performance of coherent OTDRs

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We derive the statistics of a coherently detected backscatter waveform taking into account the effects of polarization. For the first time these statistics are related to measurable parameters. We show that for long-range OTDRs the effects of polarization are statistically small.

In relation to the demodulation process we used our statistical model to show that for long-range operation and with heterodyne detection all types of demodulation provide similar performance. With homodyne detection half-wave demodulation results in a 7 dB lower signal-to-noise ratio than the other types of demodulation which have similar performance. There is the usual 3 dB advantage of homodyne over heterodyne detection. Our results indicate that with the same launched powers, the signal obtained from a coherent OTDR can have up to a 37 dB better signal-to-noise ratio than one obtained from an incoherent pulse OTDR. This results in a 9 dB range advantage.

We verify previously tabulated results which we found apply only for short-range operation. We use our model to predict the limits of long-range performance and to predict the effect of speckle on averaging. Finally, we explain the breakpoint behaviour that can be seen in results already reported and which is characteristic of linear full- or half-wave envelope demodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. L. DANIELSON,Appl. Opt. 24 (1985) 2313.

    Google Scholar 

  2. P. HEALEY and D. J. MALYON,Electron. Lett. 18 (1982) 862.

    Google Scholar 

  3. E. BODTKER, B. TROMBORG, J. MARK and C. J. NIELSEN,ibid. 19 (1983) 361.

    Google Scholar 

  4. S. WRIGHT, K. RICHARDS, S. K. SALT and E. WALLBANK, 9th European Conference on Optical Communication, Geneva (1983) pp. 177–180.

  5. R. E. EPWORTH, D. F. SMITH and S. WRIGHT, 10th European Conference on Optical Communication, Stuttgart (September 1984) pp. 132–133.

  6. S. WRIGHT, R. E. EPWORTH, D. F. SMITH and J. P. KING, 2nd Optical Fibre Sensor Conference, Stuttgart (September 1984) pp. 347–350.

  7. D. F. SMITH, S. WRIGHT, R. E. EPWORTH and J. P. KING, Technical Digest of the IEE Colloquium on Advances in Coherent Optic Devices and Technologies (March 1985) pp. 17/1–17/4.

  8. J. P. KING and S. WRIGHT, Technical Digest of the IEE Colloquium on Advances in Coherent Optic Devices and Technologies (March 1985) pp. 15/1–15/5.

  9. P. HEALEY, R. C. BOOTH, B. E. DAYMOND-JOHN and B. K. NAYAR,Electron. Lett. 20 (1984) 360.

    Google Scholar 

  10. P. HEALEY,ibid. 20 (1984) 30.

    Google Scholar 

  11. Idem, ibid. 20 (1984) 443.

    Google Scholar 

  12. Idem, ibid. 21 (1985) 226.

    Google Scholar 

  13. Idem, Technical Digest of the IEE Colloquium on Advances in Coherent Optic Devices and Technologies (March 1985) pp. 14/1–14/7.

  14. R. M. HOWARD, J. L. HULLETT and R. D. JEFFERY,Opt. Quantum Electron. 18 (1986) 291.

    Google Scholar 

  15. R. A. HARMON,Electron. Lett. 18 (1982) 1058.

    Google Scholar 

  16. E. BRINKMEYER,J. Opt. Soc. Am. 70 (1980) 1010.

    Google Scholar 

  17. B. Y. KIM and S. S. CHOI,Opt. Lett. 6 (1981) 578.

    Google Scholar 

  18. E. BRINKEMEYER,ibid. 6 (1981) 575.

    Google Scholar 

  19. B. Y. KIM and S. S. CHOI,Electron. Lett. 17 (1981) 193.

    Google Scholar 

  20. V. RAMASWAMY, R. D. STANDLEY, D. SZE and W. G. FRENCH,Bell Syst. Tech. J. 57 (1978) 635.

    Google Scholar 

  21. A. YARIV, ‘Introduction to Optical Electronics’ (Holt, Rinehart and Winston, 1976) Ch. 11.

  22. M. C. TEICH,Appl. Phys. Lett. 14 (1969) 201.

    Google Scholar 

  23. M. NAKAZAWA,J. Opt. Soc. Am. 73 (1983) 1175.

    Google Scholar 

  24. R. LOUDON, ‘The Quantum Theory of Light’ (Clarendon, Oxford 1973) p. 262.

    Google Scholar 

  25. P. B. GALLION and G. DEBARGE,IEEE J. Quantum Electron. 20 (1984) 343.

    Google Scholar 

  26. C. H. HENRY,ibid. 18 (1982) 259.

    Google Scholar 

  27. K. THYAGARAJAN and A. K. GHATAK, ‘Lasers: Theory and Application’ (Plenum, 1981) Chs 3 and 6.

  28. O. SVELTO, ‘Principles of Lasers’ (Plenum, 1982) Ch. 2.

  29. S. C. RASHLEIGH,IEEE J. Lightwave Technol. T-1 (1983) 862.

    Google Scholar 

  30. O. D. GRACE,J. Acoustic. Soc. Am. 69 (1981) 191.

    Google Scholar 

  31. P. HEALEY,IEEE J. Lightwave Technol. LT-3 (1985) 876.

    Google Scholar 

  32. A. PAPOULIS, ‘Probability, Random Variables and Stochastic Processes’ (McGraw-Hill, 1965) pp. 481–483.

  33. P. HEALEY,Opt. Quantum Electron. 16 (1984) 267.

    Google Scholar 

  34. M. P. GOLD and A. H. HARTOG,Electron. Lett. 19 (1983) 463.

    Google Scholar 

  35. Idem, ibid. 20 (1984) 285.

    Google Scholar 

  36. M. P. GOLD,IEEE J. Lightwave Technol. Lt-3 (1985) 39.

    Google Scholar 

  37. D. C. CHAMPENEY, ‘Fourier Transforms and their Physical Applications’ (Academic, 1973) pp. 85–87.

  38. A. PAPOULIS, ‘Probability, Random Variables and Stochastic Processes’ 2nd Edn (McGraw-Hill, 1984) pp. 145–146.

  39. R. LOUDON, ‘The Quantum Theory of Light’ (Clarendon, Oxford, 1973) pp. 99–100; Problem 6–7, p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, R.M. Statistics of coherently detected backscatter and range performance of coherent OTDRs. Opt Quant Electron 19, 145–168 (1987). https://doi.org/10.1007/BF02030651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02030651

Keywords

Navigation