Journal of Plant Growth Regulation

, Volume 5, Issue 4, pp 191–205 | Cite as

Investigations on the endogenous levels of abscisic acid in a range of parasitic phanerogams

  • B. Ihl
  • F. Jacob
  • A. Meyer
  • G. Sembdner


The endogenous levels of abscisic acid in the parasitic phanerogamsArceuthobium oxycedri (DC) Bieb.,Cassytha filiformis L.,Lathraea squamaria L.,Melampyrum pratense L.,Orobanche hederae Duby., andViscum album L. were investigated. In general, the content of abscisic acid was high in parasites which deprive their hosts of both phloem- and xylem-transported substances and much lower in those that deprive their hosts of sap from the xylem only. Within the parasites studied in more depth (e.g.,Orobanche hederae, Lathraea squamaria, andMelampyrum pratense) the highest abscisic acid levels were found in their sink regions, especially in their inflorescences. It is suggested that a high concentration of abscisic acid is associated with plant tissues showing a high demand for phloem-transported substances. The possible role of abscisic acid in such tissues is discussed.


Plant Tissue Acid Level Abscisic Acid High Demand Endogenous Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber M, Fer A, Salle G (1983) Etude du transfert des substances organiques de l'hôte (Vicia faba) vers le parasite (Orobanche crenata Forsk.). Z Pflanzenphysiol 112:297–308Google Scholar
  2. Cantlon JE, Curtis EJC, Malcolm WM (1963) Studies ofMelampyrum lineare. Ecology (Durham/USA) 44:466–474Google Scholar
  3. Clifford PE, Offler CE, Patrick JW (1986) Growth regulators have rapid effects on photosynthate unloading from seed coats ofPhaseolus vulgaris. Plant Physiol 80:635–637Google Scholar
  4. Coombe BG, Hale CR (1973) The hormone content of ripening grape berries and the effect of growth substance treatments. Plant Physiol 51:629–634Google Scholar
  5. Dathe W, Schneider G, Sembdner G (1978) Endogenous gibberellins and inhibitors in caryopses of rye. Phytochemistry 17:963–966Google Scholar
  6. Dathe W, Sembdner G, Yamaguchi I, Takahashi N (1982) Gibberellins and growth inhibitors in spring bleeding sap, woods and branches ofJuglans regia L. Plant Cell Physiol 23:115–123Google Scholar
  7. De la Harpe AC, Visser JH, Grobbelaar N (1981) Photosynthetic characteristics of some south African parasitic flowering plants. Z Pflanzenphysiol 103:265–275Google Scholar
  8. Dewdney SJ, McWha JA (1979) Abscisic acid and the movement of photosynthetic assimilates towards developing wheat (Triticum aestivum) grains. Z Pflanzenphysiol 92:183–186Google Scholar
  9. Dörffling K, Tietz A, Fenner R, Naumann R, Dingkuhn M (1984) Einfluß von Abscisinsäure auf den Transport und die Einlagerung von Assimilaten. Ber Dtsch Bot Ges 97:87–99Google Scholar
  10. Dörr I, Kollmann R (1975) Strukturelle Grundlagen des Parasitismus beiOrobanche. II. Die Differenzierung der Assimilatleitbahnen im Haustorialgewebe. Protoplasma 83:185–199Google Scholar
  11. Drennan DSH, El Hiweris SO (1979) Changes in growth regulating substances inSorghum vulgare infected byStriga hermonthica. In: Musselman LJ, Worsham AD, Eplee RE (eds) Proceedings of the second symposium on parasitic weeds. North Carolina State University Press, Raleigh, pp 144–155Google Scholar
  12. Düring H, Alleweldt G (1980) Effects of plant hormones on phloem transport in grape vines. Ber Dtsch Bot Ges 93:339–347Google Scholar
  13. Düring H, Alleweldt G (1984) Zur möglichen Bedeutung der Abscisinsäure bei der Zuckereinlagerung in die Weinbeere. Ber Dtsch Bot Ges 97:101–113Google Scholar
  14. Ehleringer JR, Schulze ED, Ziegler H, Lange OL, Farquhar GD, Cowar IR (1985) Xylem-tapping mistletoes: Water or nutrient parasites. Science 227:1479–1481Google Scholar
  15. Elliott D, Hosford J, Smith JI, Lawrence DK (1986) Opportunities for regulation of sugar beet storage root growth. Biol Plant 28:1–8Google Scholar
  16. Eschrich W (1980) Free space invertase, its possible role in phloem unloading. Ber Dtsch Bot Ges 93:363–378Google Scholar
  17. Gräbner R, Schneider G, Sembdner G (1975) Gibberelline XLII. Mitteilung. Fraktionierung von Gibberellinen, Gibberellinkonjugaten und anderen Phytohormonen durch DEAE-Sephadex-Chromatographie. J Chromatogr 121:110–115Google Scholar
  18. Gräbner R, Dathe W, Sembdner G (1980) Endogene Pflanzenhormone der AckerboneVicia faba L. I. Abscisinsäure und andere Wachstumsinhibitoren in sich entwickelnden Samen. Biochem Physiol Pflanz 175:447–459Google Scholar
  19. Gray RC, Mallaby R, Ryback G, Williams VP (1974) Mass spectra of methyl abscisate and isotopically labelled analogues. J Chem Soc Perkin Trans II:919–924Google Scholar
  20. Gustavson FG (1946) Influence of external and internal factors on growth hormone in green plants. Plant Physiol 21:49–62Google Scholar
  21. Härtel O (1937) Uber den Wasserhaushalt vonViscum album L. Ber Dtsch Bot Ges 55:310–321Google Scholar
  22. Hoad GV (1973) Effect of moisture stress on abscisic acid levels inRicinus communis L. with particular references to phloem exudate. Planta 113:367–372Google Scholar
  23. Hull RJ, Leonard OA (1964) Physiological aspects of parasitism in mistletoes (Arceuthobium andPhoradendron). 1. The carbohydrate nutrition of mistletoe. Plant Physiol 39:996–1007Google Scholar
  24. Ihl B, Jacob F, Sembdner G (1984) Studies onCuscuta reflexa Roxb. V. The level of endogenous hormones in the parasite,Cuscuta reflexa, and its host,Vicia faba L., and a suggested role in the transfer of nutrients from host to parasite. Plant Growth Regulation 2:77–90Google Scholar
  25. Israel S, Dörr I, Kollmann R (1980) Das Phloem der Haustorien vonCuscuta. Protoplasma 103:309–321Google Scholar
  26. Jacob F, Strobel U, Engelbrecht L, Schulz W (1975) Studien anCuscuta reflexa Roxb. III. Zur Frage einer cytokininabhängigen Nährstoffaufnahme. Biochem Physiol Pflanz 168:349–359Google Scholar
  27. Kimura Y, Suzuki A, Takematsu T, Konnai W, Takeuchi Y (1982) (+)-Abscisic acid and two compounds showing chlorophyll degradation activity inCuscuta pentagona Engelm. Agric Biol Chem 46:1071–1073Google Scholar
  28. King RW (1976) Abscisic acid in developing wheat grains and its relation to grain growth and maturity. Planta 132:43–51Google Scholar
  29. Klaren CH (1975) Physiological aspects of the hemiparasiteRhinanthus serotinus. Ph.D. thesis, Groningen, The Netherlands.Google Scholar
  30. Lenton JR, Perry VM, Saunders PF (1971) The identification and quantitative analysis of abscisic acid in plant extracts by gas-liquid chromatography. Planta 96:271–280Google Scholar
  31. Malek E, Baker DA (1978) Effect of fusicoccin on proton cotransport of sugars in the phloem loading ofRicinus communis L. Plant Sci Lett 11:233–239Google Scholar
  32. Quebedeaux B, Sweetser PB, Rowell JC (1976) Abscisic acid levels in soybean reproductive structures during development. Plant Physiol 58:363–366Google Scholar
  33. Radley M (1976) The development of wheat grain in relation to endogenous growth substances. J Exp Bot 27:1009–1021Google Scholar
  34. Renaudin S (1974) Contribution à l'étude de la biologie des phanérogames parasites: Recherches surLathraea clandestina L. (Scrophulariacées). Ph.D. thesis, Nantes, FranceGoogle Scholar
  35. Renaudin S, Larher F (1981) The transfer of organic substances from host (Alnus glutinosa Gaertn.) to the parasite plant (Lathraea clandestina L.). Z Pflanzenphysiol 104:71–80Google Scholar
  36. Saftner RA, Wyse RE (1984) Effect of plant hormones on sucrose uptake by sugar beet root tissue discs. Plant Physiol 74:951–955Google Scholar
  37. Schaffner G (1979) Extraflorale Nektarien beiCuscuta. Ber Dtsch Bot Ges 92:721–729Google Scholar
  38. Singh M, Singh V, Misra PC, Tewari KK, Krishnan PS (1968) Biochemical aspects of parasitism by angiosperm parasites: Starch accumulation. Physiol Plant 21:525–538Google Scholar
  39. Singh JN, Rai TB, Singh JN (1972) Studies on the physiology of host-parasite relationship inOrobanche. III. Carbohydrate and nitrogen metabolism of host and parasite. Physiol Plant 27:347–353Google Scholar
  40. Tsivion Y (1978) Physiological concepts of the association between parasitic angiosperms and their hosts—a review. Isr J Bot 27:103–121Google Scholar
  41. Van Steveninck RFM, Van Steveninck ME (1983) Abscisic acid and membrane transport. In: Addicott FT (ed) Abscisic acid. Praeger, New York, pp 171–235Google Scholar
  42. Vreugdenhil D (1983) Abscisic acid inhibits phloem loading of sucrose. Physiol Plant 57:463–467Google Scholar
  43. Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31:453–489Google Scholar
  44. Weber HC (1981) Cultivated parasitic Scrophulariaceae (Rhinanthoideae). 1. Germination and development. Flora 171:23–38Google Scholar
  45. Whitney PJ (1972) The translocation of herbicide from bean (Vicia faba) to broomrape (Orobanche crenata). Ann Appl Biol 72:205–210Google Scholar
  46. Wolswinkel P (1974) Complete inhibition of setting and growth of fruits ofVicia faba L. resulting from the draining of the phloem system byCuscuta species. Acta Bot Neerl 23:48–60Google Scholar
  47. Wolswinkel P (1979) Transport of assimilates and mineral elements at the site of attachment ofCuscuta. The role of phloem unloading in the parasitic relationship. In: Musselman LJ, Worsham AD, Eplee RE (eds) Proceedings of the second symposium on parasitic weeds. North Carolina State University Press, Raleigh, pp 156–164Google Scholar
  48. Ziegler H (1955)Lathraea, ein Blutungssaftschmarotzer. Ber Dtsch Bot Ges 68:311–318Google Scholar

Copyright information

© Springer-Verlag New York Inc 1987

Authors and Affiliations

  • B. Ihl
    • 1
  • F. Jacob
    • 1
  • A. Meyer
    • 2
  • G. Sembdner
    • 2
  1. 1.Institut für Pflanzenphysiologie and MikrobiologieMartin-Luther-Universität Halle-WittenbergHalleGermany
  2. 2.Institut für Biochemie der Pflanzen, Akademie der Wissenschaften der DDRHalle (Saale)Germany

Personalised recommendations