Advertisement

Journal of Chemical Ecology

, Volume 22, Issue 12, pp 2221–2231 | Cite as

Resorcinol in exudates ofNuphar lutea

  • Rainer Sütfeld
  • Frank Petereit
  • Adolf Nahrstedt
Article

Abstract

Resorcinol (1,3-dihydroxybenzene) was identified as one of the major constituents of the exudate ofNuphar lutea seedlings, which were raised from seeds and cultivated under axenic conditions. The compound is released from the plants in considerable amounts (up to 15 nmol/seedling/day). Highest rates of resorcinol exudation were measured when the seedlings were incubated under physiological conditions (macronutrient and light supply) that resembled those of natural stands of the plant. An inverse correlation exists between nitrate and/or light supply and resorcinol production. Because of its generally toxic properties, resorcinol is suggested to play a role as an allelochemical in interactions between macrophytes and other organisms of the aquatic ecosystem. A first approach of resorcinol application to zooplankton and phytoplankton organisms resulted in deleterious effects against aDaphnia species. Two Cryptophyceae species reduced resorcinol concentration to zero, showing a concomitant increase of the size of starch granule enclosures. Cyanophyceae and Chlorophyceae seemed not to be affected.

Key Words

Exudation Nuphar lutea Nymphaeaceae yellow water lily macrophytes phytoplankton zooplankton phenols resorcinol allelochemicals nitrate light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, H. M. 1993. Phenolics in ecological interactions—the importance of oxidation.J. Chem. Ecol. 19:1521–1552.Google Scholar
  2. Barrero, A. F., Cabrera, E., Rodriguez, I., andPlanelles, F. 1994. Alkylresorcinols and isocoumarins fromOnonis pubescens, Phytochemistry 35:493–498.Google Scholar
  3. Bouillant, M. L., Jacoud, C., Zanella, Favrebonvin, andBally, R. 1994. Identification of 5-(12-heptadecenyl)-resorcinol in rice root exudates.Phytochemistry 35:769–771.CrossRefGoogle Scholar
  4. Chapman, P. J., andRibbons, D. W. 1976. Metabolism of resorcinylic compounds by bacteria: Orcinol pathway inPseudomonas putida.J. Bacteriol. 125:975–984.PubMedGoogle Scholar
  5. Droby, S., Jacoby, B., andGoldman, A. 1987. Induction of antifungal resorcinols in flesh or unripe mango fruits and its relation to latent infection byAlternaria alternata.Physiol. Mol. Plant Pathol. 30:285–292.CrossRefGoogle Scholar
  6. Elakovich, S. D., andWooten, J. W. 1991. Allelopathic potential ofNuphar lutea (L.) Sibth. & Sm. (Nymphaeaceae).J. Chem. Ecol. 17:707–714.CrossRefGoogle Scholar
  7. Fischer, N. H., Williamson, G. B., Weidenhamer, J. D., andRichardson, D. R. 1994. In search of allelopathy in the Florida scrub: The role of terpenoids.J. Chem. Ecol. 20:1355–1380.CrossRefGoogle Scholar
  8. Gopal, B., andGoel, U. 1993. Competition and allelopathy in aquatic plant communities.Bot. Rev. 59:155–210.Google Scholar
  9. Grodzinsky, A. M. 1982. Evolutionary problems of the chemical interaction among plants, pp. 133–143,in V. H. A. Novak and J. Mlikovsky (eds.). Evolution and Environment. Czechoslovak Academy of Sciences, Prague, Czechoslovakia.Google Scholar
  10. Groseclose, E. E., andRibbons, D. W. 1981. Metabolism of resorcinylic compounds by bacteria: New pathway for resorcinol catabolism inAzotobacter vinelandii.J. Bacteriol. 146:460–466.PubMedGoogle Scholar
  11. Gross, E. M., Meyer, H., andSchilling, G. 1996. Release and ecological impact of algicidal hydrolyzable polyphenols inMyriophyllum spicatum.Phytochemistry 41:133–138.CrossRefGoogle Scholar
  12. Harborne, J. B. 1988. Introduction to Ecological Biochemistry, 3rd. ed., Academic Press, London.Google Scholar
  13. Harborne, J. B., andSimmonds, N. W. 1964. The natural distribution of phenolic aglycones, pp. 77–128,in J. B. Harborne (ed.). Biochemistry of Phenolic Compounds, Academic Press London.Google Scholar
  14. Hegnauer, R. 1990. Chemotaxonomie der Pflanzen, Vol. 9, Birkhäuser Verlag, Zürich, p. 73.Google Scholar
  15. Hellebust, J. A. 1974. Extracellular products, pp. 838–863,in W. D. P. Steward (ed.). Algal Physiology and Biochemistry, Botanical Monographs, Vol. 10. Blackwell, Oxford.Google Scholar
  16. Ho, S.-C. 1979. Structure, species diversity and primary production of epiphytic algal communities in the Schöhsee (Holstein), West Germany. Dissertation. Christian-Albrechts-Universität, Kiel, Germany.Google Scholar
  17. Kachhi, A. N., andModi, V. V. 1976. Properties of catechol-2,3-oxygenase fromPseudomonas aeruginosa.Indian J. Biochem. Biophys. 13:234–236.PubMedGoogle Scholar
  18. Moebus, K., andJohnson, K. M. 1974. Exudation of dissolved organic carbon by brown algae.Mar. Biol. 26:117–125.CrossRefGoogle Scholar
  19. Neujahr, H. Y., andVarga, J. M. 1970. Degradation of phenols by intact cells and cell-free preparations ofTrichosporon cutaneum.Eur. J. Biochem. 13:37–44.CrossRefPubMedGoogle Scholar
  20. Niva 1986. NIVAs Kultursamling av Alger. Culture Collection of Algae at Norwegian Institute for Water Research. Catalogue of Strains, Edition 1986. Oslo, Norway.Google Scholar
  21. Ostrofsky, M. L., andZettler, E. R. 1986. Chemical defences in aquatic plants.Ecology 74:279–287.Google Scholar
  22. Paller, G., Hommel, R. K., andKleber, H. P. 1995. Phenol degradation byAcinetobacter calcoaceticus NCIB 8250.J. Basic Microbiol. 35:325–335.PubMedGoogle Scholar
  23. Putnam, A. R., andTang, C.-S. 1986. The Science of Allelopathy. John Wiley & Sons, New York.Google Scholar
  24. Ragan, M. A., andJensen, A. 1979. Qualitative studies on brown algal phenols. III. Light-mediated exudation of polyphenols fromAscophyllum nodosum (L.) Le Jol.J. Exp. Mar. Biol. Ecol. 36:91–101.CrossRefGoogle Scholar
  25. Rice, E. L. 1984. Allelopathy (Physiological Ecology). Academic Press, Orlando, Florida.Google Scholar
  26. Shailubhai, K., Rao, N. N., andModi, V. V. 1982. Degradation of benzoate and salicylate byAspergillus niger.Indian J. Exp. Bot. 20:166–168.Google Scholar
  27. Shailubhai, K., Somayaji, R., Rao, N. N., andModi, V. V. 1983. Metabolism of resorcinol and salicylate inAspergillus niger.Experientia 39:70–72.CrossRefPubMedGoogle Scholar
  28. Smits, A. J. M., van Avesaath, P. H., andvan der Velde, G. 1990. Germination requirements and seed banks of some nymphaeid macrophytes:Nymphaea alba L.,Nuphar lutea (L.) Sm. andNymphoides peltata (Gmel.) O. Kuntze.Freshwater Biol. 24:315–326.Google Scholar
  29. Sondergaard, M. 1981. Kinetics of extracellular release of14C-labelled organic carbon by submerged macrophytes.Oikos 36:331–347.Google Scholar
  30. Sütfeld, R. 1989. Preparative liquid chromatography with analytical separation quality. Interval injection/displacement reversed phase high-performance liquid chromatography.J. Chromatogr. 464:103–115.CrossRefGoogle Scholar
  31. Sütfeld, R. 1993. Exudation of UV-light absorbing natural products by seedlings ofNuphar lutea.Chemoecology 4:108–114.CrossRefGoogle Scholar
  32. Szczepanska, W. 1987. Allelopathy in helophytes.Arch. Hydrobiol. Beih. Ergebn. Limn. 27:173–179.Google Scholar
  33. The Merck Index. 1983. An Encyclopedia of Chemicals, Drugs, and Biologicals, 10th ed. M. Windholz (ed.). Merck & Co., Rahway, New Jersey.Google Scholar
  34. Tschech, A., andSchink, B. 1985. Fermentative degradation of resorcinol and resorcylic acids.Arch. Microbiol. 143:52–59.CrossRefGoogle Scholar
  35. Weidenhamer, J. D., Menelaou, M., Macias, F. A., Fischer, N. H., Richardson, D. R., andWilliamson, G. B. 1994. Allelopathic potential of menthofuran monoterpenes fromCalamintha ashei.J. Chem. Ecol. 20:3345–3359.Google Scholar
  36. Wetzel, R. G. 1993. Humic compounds from wetlands: Complexation, inactivation, and reactivation of surface-bound and extracellular enzymes.Verh. Int. Ver. Limn. 25:122–128.Google Scholar
  37. Williamson, G. B., Richardson, D. R., andFischer, N. H. 1992. Allelopathic mechanisms in fire-prone communities, pp. 58–75,in S. J. H. Rizvi and V. Rizvi (eds.). Allelopathy: Basic and Applied Aspects. Chapman and Hall, London.Google Scholar
  38. Willis, R. J. 1994. Terminology and trends in allelopathy.Allelopathy J. 1:6–28.Google Scholar
  39. Wium-Andersen, S. 1987. Allelopathy among aquatic plants.Arch. Hydrobiol. Beih. Ergebn. Limn. 27:167–172.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Rainer Sütfeld
    • 1
  • Frank Petereit
    • 2
  • Adolf Nahrstedt
    • 2
  1. 1.Abt. f. ÖkophysiologieMax-Planck Institut f. LimnologiePlönGermany
  2. 2.Inst. f. Pharmazeutische Biologie und PhytochemieWestf. Wilhelms-UniversitätMünsterGermany

Personalised recommendations