Journal of Chemical Ecology

, Volume 22, Issue 12, pp 2197–2207 | Cite as

Role of prey odor in food recognition by rock crabs,Cancer irroratus say

  • Steve Rebach


Rock crabs,Cancer irroratus, respond to food odors in low concentration as measured by changes in antennular flicking rate. The responses of rock crabs to prey odor were tested in the presence and absence of visual cues to determine the role of chemical cues in prey recognition. Crabs were attracted to the source of mussel odor introduced into one arm of a Y maze. Natural and artificial prey shells and resin boxes were presented to crabs with and without the presence of mussel extract. The crabs were able to see, handle, and manipulate these objects. Crabs opened and consumed contents that emitted chemosensory cues and ignored identical objects that did not. Rock crabs were attracted to food odors and are capable of utilizing chemical cues to detect, locate, and identify food items.

Key Words

Crustacea crabs marine animals chemoreception odor vision foraging feeding Cancer irroratus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ache, B. W. 1982. Chemoreception and thermoreception, pp. 369–398,in H. L. Atwood and D. C. Sandeman (eds.). The Biology of Crustacea, Vol. 3. Academic Press, New York.Google Scholar
  2. Ache, B. W. 1988. Integration of chemosensory information in aquatic invertebrates, pp. 387–401,in J. Atema, R. R. Fay, A. N. Popper and W. N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Plenum Press, New York.Google Scholar
  3. Ameyaw-Akumfi, C. 1987. Mating in the lagoon crabCardiosoma armatum Herklots.J. Crust. Biol. 7:433–436.Google Scholar
  4. Bigford, T. E. 1979. Synopsis of biological data on the rock crab,Cancer irroratus Say. NOAA Technical Report. FAO Synopsis No. 123. US Department of Commerce, NOAA, NMFS, pp. 1–26.Google Scholar
  5. Carr, W. E. S., andDerby, C. D. 1986. Chemically stimulated feeding behavior in marine animals: Importance of chemical mixtures and involvement of mixture interactions.J. Chem. Ecol. 12:989–1011.CrossRefGoogle Scholar
  6. Derby, C. D., andAtema, J. 1988. Chemoreceptor cells in aquatic invertebrates: Peripheral mechanisms of chemical signal processing in decapod crustaceans, pp. 365–385,in J. Atema, R. R. Fay, A. N. Popper and W. N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Plenum Press, New York.Google Scholar
  7. Diaz, H., Forward, R. B., Jr., Orihuela, B. andRittschof, D. 1994. Chemically stimulated visual orientation and shape discrimination by the hermit crabClibanarius vittatus (Bosc).J. Crust. Biol. 14:20–26.Google Scholar
  8. Haefner, P. A., Jr., andvan Engel, W. A. 1975. Aspects of molting, growth and survival of male rock crabs,Cancer irroratus, in Chesapeake Bay.Chesapeake Sci. 16:253–265.Google Scholar
  9. Hamilton, P. V. 1976. Predation onLittorina irrorata (Mollusca: Gastropoda) byCallinectes sapidus (Crustacea: Portunidae).Bull. Mar. Sci. 26:403–409.Google Scholar
  10. Hudon, C., andLamarche, G. 1989. Niche segregation between American lobsterHomarus americanus and rock crabCancer irroratus.Mar. Ecol. Prog. Ser. 52:155–168.Google Scholar
  11. Jachowski, R. L. 1974. Agonistic behavior of the blue crab,Callinectes sapidus Rathbun.Behaviour 50:232–253.Google Scholar
  12. Juanes, F., andHartwick, E. B. 1990. Prey size selection in Dungeness crabs: The effect of claw damage.Ecology 71:744–758.Google Scholar
  13. Kaiser, M. J., Hughes, R. N., andGibson, R. N. 1993. Factors affecting diet selection in the shore crab,Carcinus maenas (L.).Anim. Behav. 45:83–92.CrossRefGoogle Scholar
  14. Langdon, J. W., andHerrnkind, W. F. 1985. Visual shape discrimination in the fiddler crab,Uca pugilator.Mar. Behav. Physiol. 11:315–325.CrossRefGoogle Scholar
  15. Laverack, M. S. 1988. The diversity of chemoreceptors, pp. 287–312,in J. Atema, R. R. Fay, A. N. Popper and W. N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Plenum Press, New York.Google Scholar
  16. Lee, S. Y., andSeed, R. 1992. Ecological implications of cheliped size in crabs: Some data fromCarcinus maenas andLiocarcinus holsatus.Mar. Ecol. Prog. Ser. 84:151–160.Google Scholar
  17. Millikin, M. R., andWilliams, A. B. 1984. Synopsis of biological data on the blue crab,Callinectes sapidus Rathbun. NOAA Technical Report. FAO Synopsis No. 138. US Department of Commerce, NOAA, NMFS, pp. 1–39.Google Scholar
  18. Rebach, S. 1981. Pelletized diet for rock crabs.Prog. Fish-Cult. 43:148–150.Google Scholar
  19. Rebach, S. 1985. Rhythmicity under constant conditions in the rock crab,Cancer irroratus.Bull. Mar. Sci. 36:454–466.Google Scholar
  20. Rebach, S. 1987. Entrainment of seasonal and non-seasonal rhythms by the rock crab,Cancer irroratus.J. Crust. Biol. 7:581–594.Google Scholar
  21. Rebach, S., French, D. P., von Staden, F. C., Wilber, M. B., andByrd, V. E. 1990. Antennular sensitivity of the rock crab,Cancer irroratus to food substances.J. Crust. Biol. 10:213–217.Google Scholar
  22. Rittschof, D. 1992. Chemosensation in the daily life of crabs.Am. Zool. 32:363–369.Google Scholar
  23. Rittschof, D., andSutherland, J. P. 1986. Field studies on chemically mediated behavior in land hermit crabs: Volatile and nonvolatile odors.J. Chem. Ecol. 12:1273–1284.CrossRefGoogle Scholar
  24. Shotton, L. R. 1973. Biology of the Rock Crab,Cancer irroratus Say, in the Coastal Waters of Virginia. MA Thesis. University of Virginia, Charlottesville, Virginia, 72 pp.Google Scholar
  25. Siegel, S., andCastellan, N. J., Jr. 1988. Nonparametric Statistics for the Behavioral Sciences, 2nd ed. McGraw-Hill, New York, New York, 399 pp.Google Scholar
  26. Sokal, R. R., andRohlf, F. J. 1981. Biometry, 2nd ed. W. H. Freeman, New York, 859 pp.Google Scholar
  27. Stehlik, L. L. 1993. Diets of the brachyuran crabsCancer irroratus, C. borealis, andOvalipes ocellatus in the New York Bight.J. Crust. Biol. 13:723–735.Google Scholar
  28. Wilbur, K. M., andSaleuddin, A. S. M. 1983. Shell formation, pp. 235–287,in A. S. M. Saleuddin and K. M. Wilbur (eds.). The Mollusca, Vol. 4. Academic Press, New York.Google Scholar
  29. Zimmer-Faust, R. K. 1989. The relationship between chemoreception and foraging behavior in crustaceans.Limnol. Oceanogr. 34:1367–1374.Google Scholar
  30. Zimmer-Faust, R. K. 1993. ATP: A potent prey attractant evoking carnivory.Limnol. Oceanogr. 38:1271–1275.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Steve Rebach
    • 1
  1. 1.Department of Natural SciencesUniversity of Maryland Eastern ShorePrincess Anne

Personalised recommendations