Communications in Mathematical Physics

, Volume 85, Issue 1, pp 27–38 | Cite as

On the inverse problem in statistical mechanics

  • N. M. Hugenholtz
Article

Abstract

For quantum spin systems it is known that for a suitable space of potentials the equilibrium states areW*-dense in the set of all translation invariant states. The problem discussed in this paper is how to recognize such equilibrium states and how to find the corresponding potential. A necessary and sufficient condition for a state to be an equilibrium state for some potential is given in Sect. 3.

Keywords

Banach Space Equilibrium State Inverse Problem Tangent Plane Finite Subset 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lanford, O.E. III, Robinson, D.W.: Statistical mechanics of quantum spin systems. III. Commun. Math. Phys.9 327–338 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Griffiths, R.B., Ruelle, D.: Strict convexity (continuity) of the pressure in lattice systems. Commun. Math. Phys.23 169–175 (1971)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Robinson, D.W.: Statistical mechanics of quantum spin systems. II. Commun. Math. Phys.7 337–348 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ruelle, D.: Statistical mechanics. New York: W.A. Benjamin 1969MATHGoogle Scholar
  5. 5.
    Roos, H.: Strict convexity of the pressure: a note on a paper of R.B. Griffiths and D. Ruelle. Commun. Math. Phys.36 263–276 (1974)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hugenholtz, N. M.:C*-algebras and statistical mechanics. In: Proceedings of the symposium in pure mathematics of the A.M.S., held in Kingston, Ontario, 1980 (to appear)Google Scholar
  7. 7.
    Israel, R.B.: Existence of phase transitions for long-range interactions. Commun. Math. Phys.43 59–68 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Daniëls, H.A.M., van Enter, A.C.D.: Differentiability properties of the pressure in lattice systems. Commun. Math. Phys.71, 65–76 (1980)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    van Enter, A.C.D.: A note on the stability of phase diagrams in lattice systems. Commun. Math. Phys.79 25–32 (1981)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5 848–861 (1964)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • N. M. Hugenholtz
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations