Mathematische Zeitschrift

, Volume 155, Issue 3, pp 239–247 | Cite as

On non-degeneracy of the ground state of Schrödinger operators

  • Heinz-Willi Goelden
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beurling, A., Deny, J.: Espaces de Dirichlet I. Le Cas Élémentaire. Acta math.99, 203–224 (1958)Google Scholar
  2. 2.
    Combescure-Moulin, M., Ginibre, J.: Essential Self-Adjointness of Many Particle Schrödinger Hamiltonians with Singular Two-Body Potentials. Ann. Inst. Henri Poincaré, n. Sér. Sect. A,23, 211–234 (1975)Google Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics I. New York: Wiley 1953Google Scholar
  4. 4.
    Faris, W. G.: Invariant Cones and Uniqueness of the Ground State for Fermion Systems. J. Math. and Phys.13, 1285–1290 (1972)Google Scholar
  5. 5.
    Faris, W. G.: Quadratic Forms and Essential Self-Adjointness. Helv. Phys. Acta45, 1074–1088 (1972)Google Scholar
  6. 6.
    Faris, W. G.: Self-Adjoint Operators. Lecture Notes in Mathematics433. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  7. 7.
    Faris, W. G., Simon, B.: Degenerate and Non-Degenerate Ground States for Schrödinger Operators. Duke Math. J.42, 559–567 (1975)Google Scholar
  8. 8.
    Frobenius, G.: Über Matrizen aus positiven Elementen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. 471–476 (1908) and 514–518 (1909). In: Gesammelte Abhandlungen. Vol. III, pp. 404–414. Berlin, Heidelberg, New York, Springer 1968Google Scholar
  9. 9.
    Glimm, J., Jaffe, A.: The λ(φ4)2 Quantum Field Theory without Cutoffs II. The Field Operators and the Approximate Vacuum. Ann. of Math, II. Ser.91, 362–401 (1970)Google Scholar
  10. 10.
    Hellwig, G.: Partial Differential Equations. New York, Toronto, London: Blaisdell Publishing Company 1964.Google Scholar
  11. 11.
    Hellwig, G.: Differential Operators of Mathematical Physics. Reading: Addison-Wesley 1967.Google Scholar
  12. 12.
    Hoegh-Krohn, R., Simon, B.: Hypercontractive Semigroups and Two Dimensional Self-Coupled Bose Fields. J. Functional Analysis9, 121–180 (1972)Google Scholar
  13. 13.
    Kalf, H., Walter, J.: Strongly Singular Potentials and Essential Self-Adjointness of Singular Elliptic Operators in. J. Functional Analysis10, 114–130 (1972)Google Scholar
  14. 14.
    Kato, T.: Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  15. 15.
    Kato, T.: Schrödinger Operators with Singular Potentials. Israel J. Math.13, 135–148 (1972)Google Scholar
  16. 16.
    Perron, O.: Über Matrizen aus Nichtnegativen Elementen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 456–477 (1912)Google Scholar
  17. 17.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. I: Functional Analysis. New York, London: Academic Press 1972Google Scholar
  18. 18.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness. New York, London: Academic Press 1975Google Scholar
  19. 19.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. III: Analysis of Operators. New York, London: Academic Press (in preparation)Google Scholar
  20. 20.
    Simon, B.: Pointwise Bounds on Eigenfunctions and Wave Packets inN-Body Quantum Systems III. Trans. Amer. math. Soc208, 317–329 (1975)Google Scholar
  21. 21.
    Simon, B.: An Abstract Kato's Inequality for Generators of Positivity Preserving Semigroups. Indiana Univ. Math. J. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Heinz-Willi Goelden
    • 1
  1. 1.Technische Hochschule AachenInstitut für MathematikAachenFederal Republic of Germany

Personalised recommendations