Advertisement

Agents and Actions

, Volume 24, Issue 3–4, pp 351–355 | Cite as

The effects of indomethacin and verapamil on the shape changes of vascular endothelial cells resulting from exposure to various inflammatory agents

  • A. M. Northover
Article

Abstract

Histamine (300 μM), bradykinin (2 μM), prostaglandin E2 (PGE2) (30 μM), or the leukotrienes (LT) C4 and E4 (1 μM) but not D4 (1 μM) appliedin vitro have been shown to change the shape of endothelial cells lining the guinea pig isolated thoracic inferior vena cava. All caused the formation of inter-endothelial cell gaps. Pre-treatment with either indomethacin (100 μM) or verapamil (20 μM) reduced the effects of these compounds. It is suggested that indomethacin and verapamil act by reducing the amount of intracellular calcium available for the shortening of contractile protein filaments within endothelial cells.

Keywords

Calcium Endothelial Cell Histamine Prostaglandin Indomethacin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. M. Landis,Capillary pressure and capillary permeability. Physiol. Rev.14, 404 (1934).Google Scholar
  2. [2]
    G. Majno,Studies of the inflammatory response of cells and tissues. In:Injury, inflammation and immunity, p. 58 (Eds. L. Thomas, J. W. Uhr and L. Grant). Williams and Wilkins, Baltimore (1964).Google Scholar
  3. [3]
    G. Majno, S. M. Shea and M. Leventhal,Endothelial contraction induced by histamine-type mediators. An electron microscopic study. J. Cell Biol.,42, 647 (1969).CrossRefPubMedGoogle Scholar
  4. [4]
    A. M. Northover and B. J. Northover,The effects of histamine, 5-hydroxytryptamine and bradykinin on rat mesenteric blood vessels, J. Path.98, 265 (1969).CrossRefPubMedGoogle Scholar
  5. [5]
    G. Thomas,Mechanism of ionophore A23187 induction of plasma protein leakage and of its inhibition by indomethacin. Eur. J. Pharmac.81, 35 (1982).CrossRefGoogle Scholar
  6. [6]
    F. E. Curry and W. L. Joyner,The effect of histamine, 48/80 and A23187 on albumin permeability in frog venular capillaries. Federation Proc.45, 1159 (1986).Google Scholar
  7. [7]
    E. Svensjo and G. J. Grega,Evidence for endothelial cellmediated regulation of macromolecular permeability by postcapillary venules. Federation Proc.45, 89 (1986).Google Scholar
  8. [8]
    A. M. Northover,Action of histamine on endothelial cells of guinea-pig isolated hepatic portal vein and its modification by indomethacin or removal of calcium. Br. J. exp. Path.56, 52 (1975).Google Scholar
  9. [9]
    A. M. Northover and B. J. Northover,Changes of vascular endothelial cell shape and of membrane potential in response to the ionophore A23187. Int. J. Microcirc. Clin. Exp.6, 137 (1987).PubMedGoogle Scholar
  10. [10]
    C. W. Dunnett,A multiple comparison procedure for comparing several treatments with a control. J. Am. Statistical Assoc.50, 1096 (1955).Google Scholar
  11. [11]
    H. R. Baumgartner,Platelet interaction with vascular structures. In:Thrombosis: risk factors and diagnostic approaches, p. 161 (Ed. K. M. Brinkhouse and S. Hinnom), F. K. Schattauer Verlag, Stuttgart-New York (1971).Google Scholar
  12. [12]
    B. J. Northover,Indomethacin—a calcium antagonsit. Gen Pharmac.8, 293 (1977).Google Scholar
  13. [13]
    A. M. Northover and B. J. Northover,Calcium ions in acute inflammation: a possible site for anti-inflammatory drug action. In:Handbook of Inflammation, vol. 5, p. 235 (Eds. I. L. Bonta, M. A. Bray and M. J. Parnham). Elsevier, Amsterdam (1985).Google Scholar
  14. [14]
    J. R. Vane,Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature (Lond.),231, 232 (1971).Google Scholar
  15. [15]
    A. Fleckenstein,Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol.17, 149 (1977).CrossRefGoogle Scholar
  16. [16]
    R. H. A. Liddell, A. R. W. Scott and J. G. Simpson,Histamine-induced changes in the endothelium of post-capillary venules: effects of chelating agents and cytochalasin B, Bibl. Anat.20, 109 (1981).Google Scholar
  17. [17]
    C. Crone,Modulation of solute permeability in microvascular endothelium, Federation Proc.45, 77 (1986).Google Scholar
  18. [18]
    B. Haraldsson, U. Zackrisson and B. Rippe,Calcium dependence of histamine-induced increases in capillary permeability in isolated perfused rat hindquarters. Acta Physiol. Scand.128, 247 (1986).PubMedGoogle Scholar
  19. [19]
    D. Rostrosen and J. I. Gallin,Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin and promotes albumin diffusion across cultured endothelial monolayers. J. Cell Biol.103, 2379 (1986).CrossRefPubMedGoogle Scholar
  20. [20]
    T. A. Brock, R. W. Alexander and M.A. Gimbrone Jr.,Bradykinin and platelet-activating factor stimulate calcium fluxes in cultured endothelial cells. Federation Proc.43, 460 (1984).Google Scholar
  21. [21]
    F. de Clerck, L. Van Gorp and F. Verheyen,Microvascular permeability in rat skin: inhibition by flunarizine, a Ca 2+ entry blocker. Blood Vessels,23, 50 (1986).PubMedGoogle Scholar
  22. [22]
    K. K. Hamilton and P. J. Sims,Changes in cytosolic Ca 2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. J. clin. Invest.79, 600 (1987).PubMedGoogle Scholar
  23. [23]
    F. de Clerck, M. de Brabander, H. Neels and V. Van de Velde,Direct evidence for the contractile capacity of endothelial cells. Thrombosis Res.23, 505 (1981).CrossRefGoogle Scholar
  24. [24]
    C. G. Becker and R. L. Nachman,Contractile proteins of endothelial cells, platelets and smooth muscle. Am. J. Path.71, 1 (1973).PubMedGoogle Scholar
  25. [25]
    D. M. Warshaw, W. J. Mcbride and M. S. Hubbard,Ca 2+ and MgATP 2− dependent of shortening in skinned single smooth muscle cells. Am. J. Physiol.252 (Cell Physiol. 21) C418 (1987).PubMedGoogle Scholar
  26. [26]
    R. L. Jesse and R. C. Franson,Modulation of purified phospholipase A 2 activity from human platelets by calcium and indomethacin. Biochim. Biophys. Acta,575, 467 (1979).PubMedGoogle Scholar
  27. [27]
    H. P. Rodeman, L. Waxman and A. L. Goldberg,The stimulation of protein degradation in muscle by Ca 2+ is mediated by prostaglandin E 2 and does not require the calciumactivated protease. J. Biol. Chem.257, 8716 (1982).PubMedGoogle Scholar
  28. [28]
    M. S. Manku and D. F. Horrobin,Indomethacin inhibits responses to all vasoconstrictors in the rat mesenteric vascular bed: restoration of responses by prostaglandin E 2. Prostaglandins,12, 369 (1976).CrossRefPubMedGoogle Scholar
  29. [29]
    S. Sugiyama, I. Norimatsu and T. Ozawa,Possible roles of prostaglandins and calcium in ventricular vulnerability during coronary reperfusion. J. appl. Biochem.1, 402 (1979).Google Scholar
  30. [30]
    G. J. Grega, S. W. Adamski and E. Svensjo,Is there evidence for venular large junctional gap formation in inflammation? Microcirculation, Endothelium and Lymphatics2, 211 (1985).Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • A. M. Northover
    • 1
  1. 1.Department of Pharmacology, School of PharmacyLeicester PolytechnicLeicesterUK

Personalised recommendations