Mathematische Annalen

, Volume 157, Issue 5, pp 363–368 | Cite as

Some remarks on invariant substructures of associative algebras

  • Earl J. Taft


Associative Algebra Invariant Substructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Borel, A.: Groupes lineaires algebriques. Ann. Math.64, 20–82 (1956).Google Scholar
  2. [2]
    Chevalley, C.: Theorie des groupes deLie, II, Groupes algebriques. Paris: Hermann 1951.Google Scholar
  3. [3]
    Curtis, C., andI. Reiner: Representation theory of finite groups and associative algebras. New York, London 1962.Google Scholar
  4. [4]
    Malcev, A.: On the representation of an algebra as a direct sum of the radical and a semi-simple algebra. C. R. (Doklady) Acad. Sci. U.R.S.S. (N. S.)36, 42–45 (1942).Google Scholar
  5. [5]
    Séminaire C.Chevalley, 1956–1958: Classification des groupes de Lie algebriques. Paris 1958.Google Scholar
  6. [6]
    Taft, E. J.: Invariant Wedderburn factors. Illinois J. Math.1, 565–573 (1957).Google Scholar
  7. [7]
    —— Operator groups and quasi-orthogonality. Math. Ann.149, 271–275 (1963).CrossRefGoogle Scholar
  8. [8]
    —— Cayley symmetries in associative algebras. Canad. J. Math.15, 285–290 (1963).Google Scholar
  9. [9]
    -- Orthogonal conjugacies in associative and Lie algebras. Transactions Am. Math. Soc. 1964.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Earl J. Taft
    • 1
  1. 1.Chicago

Personalised recommendations