Mathematische Annalen

, Volume 157, Issue 5, pp 363–368 | Cite as

Some remarks on invariant substructures of associative algebras

  • Earl J. Taft


Associative Algebra Invariant Substructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Borel, A.: Groupes lineaires algebriques. Ann. Math.64, 20–82 (1956).Google Scholar
  2. [2]
    Chevalley, C.: Theorie des groupes deLie, II, Groupes algebriques. Paris: Hermann 1951.Google Scholar
  3. [3]
    Curtis, C., andI. Reiner: Representation theory of finite groups and associative algebras. New York, London 1962.Google Scholar
  4. [4]
    Malcev, A.: On the representation of an algebra as a direct sum of the radical and a semi-simple algebra. C. R. (Doklady) Acad. Sci. U.R.S.S. (N. S.)36, 42–45 (1942).Google Scholar
  5. [5]
    Séminaire C.Chevalley, 1956–1958: Classification des groupes de Lie algebriques. Paris 1958.Google Scholar
  6. [6]
    Taft, E. J.: Invariant Wedderburn factors. Illinois J. Math.1, 565–573 (1957).Google Scholar
  7. [7]
    —— Operator groups and quasi-orthogonality. Math. Ann.149, 271–275 (1963).CrossRefGoogle Scholar
  8. [8]
    —— Cayley symmetries in associative algebras. Canad. J. Math.15, 285–290 (1963).Google Scholar
  9. [9]
    -- Orthogonal conjugacies in associative and Lie algebras. Transactions Am. Math. Soc. 1964.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Earl J. Taft
    • 1
  1. 1.Chicago

Personalised recommendations