Journal of Chemical Ecology

, Volume 22, Issue 6, pp 1123–1131 | Cite as

Allelopathic potential of well water fromPluchea lanceolata-infested cultivated fields

  • Inderjit
  • K. M. M. Dakshini
Article

Abstract

Pluchea lanceolata, an allelopathic perennial weed, has an extensive deep root and rhizome system. The objective of the present study was to determine the allelopathic potential of well water collected from weed-infested cultivated fields. Results indicate that well water recovered fromP. lanceolata-infested cultivated fields inhibited the shoot growth of pea, chick pea, mustard, and wheat under greenhouse conditions. Two phenolic compounds, phenol and phloroglucinol, were isolated and identified from collected well water using UV spectroscopy. The allelopathic potential of the aqueous extract of the two compounds was determined by growth experiments with 104 M solutions of the compounds. As a consequence of repeated irrigation with well water fromP. lanceolata-infested fields, higher levels of phenolics can accumulate in the soil, which may contribue to increased interference to crop plants. The present study is of significance since it cautions on the use of well water for irrigating cultivated fields infested with the perennial allelopathic weed (P. lanceolata) with dense subterranean systems and emphasizes the importance of controlling such weeds in cultivated fields.

Key Words

pluchea lanceolata allelopathy weed phenol phloroglucinol well water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, U., andShafer, S. R. 1988. Microbial populations and phenolic acids in soil.Soil Biol. Biochem. 20:793–800.CrossRefGoogle Scholar
  2. Chang, C. F., Suzuki, A., Kumai, S., andTumura, S. 1969. Chemical studies on “clover sickness.” Part II. Biological functions of isoflavonoids and other related compounds.Agric. Biol. Biochem. 33:398–408.Google Scholar
  3. Cheng, H. H. 1995. Characterization of the mechanisms of allelopathy: Modeling and experimental approaches, pp. 132–141,in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes and Applications. American Chemical Society, Washington, D.C.Google Scholar
  4. Dalton, B. R., Blum, U., andWeed, S. B. 1983. Allelopathic substances in ecosystems: Effectiveness of sterile soil components in altering recovery of ferulic acid.J. Chem. Ecol. 9:1185–1201.CrossRefGoogle Scholar
  5. Haider, K., andMartin, J. P. 1975. Decomposition of specifically carbon-14 labelled benzoic and cinnamic acid derivatives in soil.Soil Sci. Soc. Am. Proc. 39:657–662.CrossRefGoogle Scholar
  6. Harborne, J. B. 1973. Phytochemical Methods. Chapman and Hall, London.Google Scholar
  7. Henderson, M. E. K. 1956. A study of the metabolism of phenolic compounds by soil fungi using spore suspensions.J. Gen. Microbiol. 14:684–691.PubMedGoogle Scholar
  8. Inderjit, andDakshini, K. M. M. 1990. The nature of interference potential ofPluchea lanceolata (DC) C. B. Clarke (Asteraceae).Plant Soil 122:298–302.Google Scholar
  9. Inderjit, andDakshini, K. M. M. 1991. Hesperetin 7-rutinoside (hesperidin) and taxifolin 3-arabinoside as germination and growth inhibitors in the soils associated with the weed,Pluchea lanceolata (DC) C. B. Clarke (Asteraceae).J. Chem. Ecol. 17:1585–1591.CrossRefGoogle Scholar
  10. Inderjit, andDakshini, K. M. M. 1992a. Formononetin 7-O-glucoside, an additional inhibitor from the soil associated with the weed,Pluchea lanceolata (DC) C. B. Clarke (Asteraceae).J. Chem. Ecol. 18:713–718.CrossRefGoogle Scholar
  11. Inderjit, andDakshini, K. M. M. 1992b. Interference potential ofPluchea lanceolata (Asteraceae): Growth and physiological responses of asparagus bean,Vigna unguiculata var.sesquipedalis.Am. J. Bot. 79:977–981.Google Scholar
  12. Inderjit, andDakshini, K. M. M. 1994a. Effect of cultivation on allelopathic interference success ofPluchea lanceolata.J. Chem. Ecol. 20:1179–1188.CrossRefGoogle Scholar
  13. Inderjit, andDakshini, K. M. M. 1994b. Allelopathic effects ofPluchea lanceolata (Asteraceae) on characteristics of four soils and growth of mustard and tomato.Am. J. Bot. 81:799–804.Google Scholar
  14. Inderjit, andDakshini, K. M. M. 1994c. Allelopathic potential of phenolics from the roots ofPluchea lanceolata.Physiol. Plant. 92:571–576.CrossRefGoogle Scholar
  15. Inderjit, andDakshini, K. M. M. 1995. Quercetin and quercitrin fromPluchea lanceolata and their effect on growth of asparagus bean, pp. 86–95,in Inderjit, K. M. M. Dakshini and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes and Applications. American Chemical Society, Washington, D.C.Google Scholar
  16. Inderjit, andDakshini, K. M. M. 1996. Allelopathic potential ofPluchea lanceolata: A comparative study of weed-infested cultivated fields.Weed Sci. 44:In press.Google Scholar
  17. Inderjit, Dakshini, K. M. M. andEinhellig, F. A. (eds). 1995. Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, D.C.Google Scholar
  18. Liebl, R. A., andWorsham, A. D. 1983. Inhibition of pitted morning glory (Ipomoea lacunsa L.) and certain other species by phytotoxic components of wheat (Triticum aestivum L.) straw.J. Chem. Ecol. 9:1027–1043.CrossRefGoogle Scholar
  19. Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetation composition.Bull. Torrey Bot. Club 93:332–351.Google Scholar
  20. Padron, J., Grist, K. L., Clark, J. B., andWender, S. H. 1960. Specificity studies on an extracellular enzyme preparation obtained from quercetin grown cells ofAspergillus.Biochem. Biophys. Res. Commun. 3:412–416.CrossRefPubMedGoogle Scholar
  21. Panse, V. G., andSukhatme, P. V. 1967. Statistical Methods for Agricultural Workers. Indian Council of Agricultural Research, New Delhi.Google Scholar
  22. Rice, E. L. 1984. Allelopathy. Academic Press, Orlando, Florida.Google Scholar
  23. Tanrisever, N., Fronczek, F. R., Fischer, N. H., andWilliamson, G. B. 1987. Ceratiolin and other flavonoids fromCeratiola ericoides.Phytochemistry 26:175–179.CrossRefGoogle Scholar
  24. Van Sumare, C. F. 1989. Phenols and phenolic acids. pp. 29–73,in J. B. Harborne (ed.). Methods in Plant Biochemistry: I. Plant Phenolics. Academic Press, San Diego.Google Scholar
  25. Waller, G. R. (ed.). 1987. Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330, American Chemical Society, Washington, D.C.Google Scholar
  26. Williams, R. D., andHoagland, R. E. 1982. The effects of naturally occurring phenolic compounds on seed germination.Weed Sci. 30:206–212.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Inderjit
    • 1
  • K. M. M. Dakshini
    • 2
  1. 1.Department of BiologyLakehead UniversityThunder BayCanada
  2. 2.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations