Radiation and Environmental Biophysics

, Volume 17, Issue 2, pp 95–113 | Cite as

Time effects in molecular radiation Biology

  • G. E. Adams
  • D. G. Jameson


Radiation action occurs over a broad timescale which extends from the very early physical processes associated with energy absorption to the very late biological effects, such as carcinogenesis which may not become apparent until many years later. The various temporal stages of radiation action are classified and their interrelationships described. Experimental projects in cellular radiation chemistry, including pulse radiolysis, are discussed, together with some applications of the techniques in this general area.

The paper also deals with some aspects of the oxygen effect in radiobiology and the mechanisms of its action. Various studies employing fast response techniques have been useful in verifying the role of fast free radical reactions in the oxygen effects and examples are given of some applications. Investigations with other hypoxic cell sensitizers, the electron affinic agents, are also briefly discussed, with an account of how studies of the timescale of radiation sensitization can be valuable in understanding mechanisms. Possible mechanisms of action of radiation sensitization by oxygen and other agents, including radical fixation and direct action processes, are considered in the light of evidence from some model systems.


Radiation Action Cell Sensitizer General Area Hypoxic Cell Free Radical Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Powers, E. L., Tallentire, A.: The roles of water in the cellular effects of ionizing radiation. In: Actions chimiques et biologiques des radiations. Haissinsky, M. (ed.), pp. 1–67. Paris: Masson 1968Google Scholar
  2. 2.
    Dodd, N. J. F., Ebert, M.: Effects of ionizing radiation on dried spores of Osmunda Regalis I. Electron spin resonance study of spores. Int. J. Radiat. Biol.18, 451–461 (1970)Google Scholar
  3. 3.
    Alexander, P., Charlesby, A.: Physico-chemical methods of protection against ionizing radiations. In: Radiobiology symposium. Bacq, Z. M., Alexander, P. (eds.), p. 49–59. London: Butterworths 1954Google Scholar
  4. 4.
    Alper, T., Howard-Flanders, P.: The role of oxygen in modifying the radiosensitivity of E. coli B. Nature178, 987 (1956)Google Scholar
  5. 5.
    Shenoy, M. A., Asquith, J. C., Adams, G. E., Michael, B. D., Watts, M. E.: Time-resolved oxygen effects in irradiated bacteria and mammalian cells: a rapid-mix study. Radiat. Res.62, 498–512 (1975)Google Scholar
  6. 6.
    Adams, G. E., Michael, B. D., Asquith, J. C., Shenoy, M. A., Watts, M. E., Whillans, D. W.: Rapid-mixing studies on the time scale of radiation damage in cells. In: Symp. “Fast Response Techniques in Chemistry and Biology”, Proc. V. Int. Cong. Radiat. Res., Seattle, 1974. Radiation Research: Biomedical chemical and physical perspectives. Nygaard, O. F., Adler, H. I., Sinclair, W. K. (eds.), pp. 478–492. London: Academic Press 1975Google Scholar
  7. 7.
    Tallentire, A., Jones, A. B., Jacobs, G. B.: The radiosensitizing actions of ketonic agents and oxygen in bacterial spores suspended in aqueous and non-aqueous milieux. Isr. J. Chem.10, 1185–1197 (1972)Google Scholar
  8. 8.
    Millar, B. C., Fielden, E. M., Steele, J.: A biphasic radiation survival response of mammalian cells to molecular oxygen. Int. J. Radiat. Biol.36, 177–180 (1979)Google Scholar
  9. 9.
    Epp, E. R., Weiss, H., Ling, C. C.: Irradiation of cells by single and double pulses of high intensity irradiation: oxygen sensitization and diffusion kinetics. Curr. Top. Radiat. Res.11, 201–230 (1976)Google Scholar
  10. 10.
    Michael, B. D., Adams, G. E., Hewitt, H. B., Jones, W. B. G., Watts, M. E.: A post-effect of oxygen in irradiated bacteria: a sub-millisecond fast mixing study. Radiat. Res.54, 239–251 (1973)Google Scholar
  11. 11.
    Michael, B. D., Harrop, H. A., Maughan, R. L., Patel, K. B.: A fast kinetics study of the modes of action of some different radiosensitizers in bacteria. Br. J. Cancer37 (Suppl. III), 29–33 (1978)Google Scholar
  12. 12.
    Adams, G. E., Dewey, D. L.: Hydrated electrons and radiobiological sensitization. Biochem. Biophys. Res. Commun.12, 473–477 (1963)CrossRefGoogle Scholar
  13. 13.
    Raleigh, J. A., Chapman, J. D., Borsa, J., Kremers, W., Reuvers, A. P.: Radiosensitization of mammalian cells by p-nitroacetophenone III. Effectiveness of nitrobenzene analogues. Int. J. Radiat. Biol.23, 377–387 (1972)Google Scholar
  14. 14.
    Simic, M., Powers, E. L.: Correlation of the efficiencies of some radiation sensitizers and their redox potentials. Int. J. Radiat. Biol.26, 87–90 (1974)Google Scholar
  15. 15.
    Meisel, D., Czapski, G.: One electron transfer equilibrium and redox potentials of radicals studied by pulse radiolysis. J. Phys. Chem.79, 1503–1509 (1975)CrossRefGoogle Scholar
  16. 16.
    Meisel, D., Neta, P.: One-electron redox potentials of nitrocompounds and radiosensitizers. Correlation with spin densities of their radical anions. J. Am. Chem. Soc.97, 5198–5203 (1975)CrossRefGoogle Scholar
  17. 17.
    Wardman, P., Clarke, E. D.: One-electron reduction potentials of substituted nitroimidazoles measured by pulse radiolysis. J. Chem. Soc. Faraday Trans. I.72, 1377–1390 (1976)CrossRefGoogle Scholar
  18. 18.
    Adams, G. E., Flockhart, I. R., Smithen, C. E., Stratford, I. J., Wardman, P., Watts, M. E.: Electron-affinic sensitization. VII: A correlation between structures, one-electron reduction potentials and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat. Res.67, 9–20 (1976)Google Scholar
  19. 19.
    Adams, G. E., Clarke, E. D., Flockhart, I. R., Jacobs, R. S., Sehmi, D. S., Stratford, I. J., Wardman, P., Watts, M. E.: Structure-activity relationships in the development of hypoxic cell radiosensitizers: I. Sensitization efficiency. Int. J. Radiat. Biol.35, 133–150 (1979)Google Scholar
  20. 20.
    Adams, G. E., Wardman, P.: Free radicals in biology: the pulse radiolysis approach. In: Free radicals in biology, Vol. III. Pryor, W. A. (ed.), pp. 53–95. London: Academic Press 1977Google Scholar
  21. 21.
    Chapman, J. D., Webb, R. G., Borsa, J.: Radiosensitization of mammalian cells by paranitroacetophenone I. Characterization in asynchronous and synchronous population. Int. J. Radiat. Biol.19, 561–574 (1971)Google Scholar
  22. 22.
    Adams, G. E., Asquith, J. C., Dewey, D. L., Foster, J. L., Michael, B. D., Willson, R. L.: Electron-affinic sensitization II. Paranitroacetophenone: a radiosensitizer for anoxic bacterial and mammalian cells. Int. J. Radiat. Biol.19, 575–585 (1971)Google Scholar
  23. 23.
    Adams, G. E., Asquith, J. C., Watts, M. E., Smithen, C. E.: Radiosensitization of hypoxic cells in vitro: a water soluble derivative of paranitroacetophenone. Nature239, 23–24 (1972)CrossRefGoogle Scholar
  24. 24.
    Whitmore, G. F., Gulyas, S., Varghese, A. J.: Studies on the radiation-sensitizing action of NDPP, A sensitizer of hypoxic cells. Radiat. Res.61, 325–341 (1975)Google Scholar
  25. 25.
    Whillans, D., Hunt, J.: Rapid-mixing studies of the mechanisms of chemical radiosensitization and protection in mammalian cells. Br. J. Cancer37 (Suppl. III), 38–41 (1978)Google Scholar
  26. 26.
    Scholes, G.: In: Molecular aspects of radiation biology. Proceedings 23rd Farkas Memorial Symposium. Stein, G. (ed.). Isr. J. Chem.10, 1107–1122 (1972)Google Scholar
  27. 27.
    Chapman, J. D., Dugle, D. L., Reuvers, A. P., Gillispie, C. J., Borsa, J.: Chemical radiosensitization studies with mammalian cells growing in vitro. In: Proc. V. Int. Cong. Radiat. Res., Seattle. Radiation Research: Biomedical, chemical and physical perspectives. Nygaard, O. F., Adler, H. I., Sinclair, W. K. (eds.), pp. 478–492. London: Academic Press 1975Google Scholar
  28. 28.
    Sapora, O., Fielden, E. M., Loverock, P. S.: A comparative study of the effect of two classes of radiosensitizer on the survival of several E. coli B and K12 mutants. Radiat. Res.69, 293–305 (1977)Google Scholar
  29. 29.
    Adams, G. E., Cooke, M. S.: Electron-affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria. Int. J. Radiat. Biol.15, 457–471 (1969)Google Scholar
  30. 30.
    Gräslund, A., Ehrenberg, A., Rupprecht, A.: Free radical formation inγ-irradiated oriented DNA containing electron-affinic radiosensitizers. Int. J. Radiat. Biol.31, 145–152 (1977)Google Scholar
  31. 31.
    Jameson, D. G., Adams, G. E.: Short-lived luminescence from solid DNA irradiated with a single 3-nanosecond electron pulse under oxic and anoxic conditions. (Submitted to Radiat. Res., 1979)Google Scholar
  32. 32.
    Fielden, E. M., Lillicrap, S. C.: In: Advances in Chemistry Series No. 81 - Radiation Chemistry I. Gould, R. F. (ed.), pp. 444–463. Washington: American Chemical Society 1968Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. E. Adams
    • 1
  • D. G. Jameson
    • 2
  1. 1.Physics DivisionInstitute of Cancer ResearchSutton, SurreyEngland
  2. 2.Physics DepartmentMiddlesex Hospital Medical SchoolLondonEngland

Personalised recommendations