Advertisement

Journal of Chemical Ecology

, Volume 15, Issue 1, pp 317–328 | Cite as

Chemical composition and function of metapleural gland secretion of the ant,Crematogaster deformis smith (hymenoptera: Myrmicinae)

  • A. B. Attygalle
  • B. Siegel
  • O. Vostrowsky
  • H. J. Bestmann
  • U. Maschwitz
Article

Abstract

The secretion of the hypertrophied metapleural gland of the antCrematogaster deformis contains a mixture of phenols, consisting mainly of 3-propylphenol, 3-pentylphenol, 3,4-dihydro-8-hydroxy-3-methylisocoumarin (mellein), 5-propylresorcinol, and 5-pentylresorcinol. The secretion is released, as a repellent, when the highly vulnerable petiolar-postpetiolar region of the abdomen is attacked by enemy ants. In addition, small amounts of the secretion are released regularly to serve as an antiseptic, which is considered the original function of the gland. The secretion also has some insecticidal properties.

Key Words

Crematogaster deformis Hymenoptera Myrmicinae ant defensive allomone repellent metapleural gland 3-propylphenol 3-pentylphenol 3,4-dihydro-8-hydroxy-3-methylisocoumarin mellein 5-propylresorcinol 5-pentylresorcinol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alles, G.A., Icke, R.N., andFeigen, G.A. 1942. Some analogs of synthetic tetrahydrocannabiol.J. Am. Chem. Soc. 64:2031–2035.CrossRefGoogle Scholar
  2. Arrendale, R.F., Severson, R.F., andChortyk, O.T. 1984. The application of capillary gas chromatography to the analyses of acidic constituents of Tobacco leaf and smoke.Beitr. Tabakforsch. Int. 22:186–197.Google Scholar
  3. Attygalle, A.B., andMorgan, E.D. 1984. Chemicals from the glands of ants.Chem. Soc. Rev. 13:245–278.CrossRefGoogle Scholar
  4. Ayer, W.A., andShewchuk, L.M. 1986. Metabolites ofNectria fuckelia.J. Nat. Prod. 49:847–848.CrossRefGoogle Scholar
  5. Ayer, W.A., Browne, L.M., andLovell, S.H. 1983. Biologically active phenolic metabolites of aVerticicladiella species.Phytochemistry 22:2267–2271.CrossRefGoogle Scholar
  6. Baker, R., Bradshaw, J.W.S., Evans, D.A., Higgs, M.D., andWadhams, L.J. 1976. An efficient all-glass splitter and trapping system for gas chromatography.J. Chromatogr. Sci. 14:425–427.Google Scholar
  7. Baker, T.C., Nishida, R., andRoelofs, W.L., 1981. Close-range attraction of female oriental fruit moths to herbal scent of male hairpencils.Science 214:1359–1361.PubMedGoogle Scholar
  8. Bellas, T., andHölldobler, B. 1985. Constituents of mandibular and Dufour's glands of an AustralianPolyrhachis weaver ant.J. Chem. Ecol. 11:525–537.CrossRefGoogle Scholar
  9. Bestmann, H.J., Classen, B., Kobold, U., Vostrowsky, O., Klingauf, F., andStein, U. 1988. Steam volatile constituents from leaves of the buck's horn,Rhus typhina. Composition and insecticidal properties.Phytochemistry. 27:85–90.CrossRefGoogle Scholar
  10. Blum, M.S., Jones, T.H., Snelling, R.R., Overal, W.L., Fales, H.M., andHighet, R.J. 1982a. Systematic implications of the exocrine chemistry of someHypoclinea species.Biochem. Syst. Ecol. 10:91–94.CrossRefGoogle Scholar
  11. Blum, M.S., Jones, T.H., Howard, D.F., andOveral, W.L. 1982b. Biochemistry of termite defenses:Coptotermes, Rhinotermes andCornitermes species.Comp. Biochem. Physiol. 71B:731–733.Google Scholar
  12. Brand, J.M., Fales, H.M., Sokoloski, E.A., MacConnell, J.G., Blum, M.S., andDuffield, R.M. 1973. Identification of mellein in the mandibular gland secretions of Carpenter ants.Life Sci. 13:201–211.CrossRefPubMedGoogle Scholar
  13. Brophy, J.J., Cavill, G.W.K., andPlant, W.D. 1981. Volatile constituents of an Australian ponerine antRhytidoponera metallica.Insect Biochem. 11:307–310.CrossRefGoogle Scholar
  14. Buschinger, A., andMaschwitz, U. 1986. Defensive behaviour and defensive mechanisms in ants, pp. 95–150,in H.R. Hermann (ed.). Defensive Mechanisms in Social Insects. Praeger, New York.Google Scholar
  15. Chamy, M.C., Gambaro, V., Garbarino, J.A., andQuilhot, W. 1985. Studies of Chilean Lichens VII. The phenolic constituents ofProtusnea malacea.J. Nat. Prod. 48:307–309.CrossRefGoogle Scholar
  16. Gavin, J., andTabacchi, R. 1975. Isolement et identification de composés phénoliques et monoterpéniques de la mousse de chêne (Evernia prunastri L.)Helv. Chim. Acta 58:190–194.CrossRefGoogle Scholar
  17. Gorfinkel, M.I., Ivanovskaia, L.Yu., andKoptyug V.A. 1969. Mass spectra of isomeric monoalkylanisoles and monoalkylphenols with straight alkyl chains.Org. Mass Spectrom. 2:273–281.CrossRefGoogle Scholar
  18. Hartung, W.H., andCrossley, F.S. 1934. Palladium catalyst. III. Reduction of ketones.J. Am. Chem. Soc. 56:158–159.CrossRefGoogle Scholar
  19. Hassanali, A., McDowell, P.G., Owaga, M.L.A., andSaini, R.K. 1986 Identification of tsetse attractants from excretory products of a wild host animal,Syncerus caffer.Insect Sci. Applic. 7:5–9.Google Scholar
  20. Hölldobler, B., andEngel-Siegel, H. 1984. The metapleural glands of ants.Psyche 91:201–224.CrossRefGoogle Scholar
  21. Hudson, B.J.F., andRobinson, R. 1941. Addition of maleic anhydride and ethyl maleate to substituted styrenes.J. Chem. Soc. 715–722.Google Scholar
  22. Kunesch, G., Zagatti, P., Pouvreau, A., andCassini, R. 1987. A fungal metabolite as the male wing gland pheromone of the bumble-bee wax moth,Apomia sociella L.Z. Naturforsch. 42c:657–659.Google Scholar
  23. Maschwitz, U. 1974. Vergleichende Untersuchungen zur Funktion der Ameisenmetathorakaldrüse.Oecologia 16:303–310.CrossRefGoogle Scholar
  24. Maschwitz, U., Koob, K., andSchildknecht, H. 1970. Ein Beitrag zur Funktion der Metathorakaldrüse bei Ameisen.J. Insect. Physiol. 16:176–189.CrossRefGoogle Scholar
  25. Morgan, E.D., andTyler, R.C. 1977. Microchemical methods for the identification of volatile pheromones.J. Chromatogr. 134:174–177.CrossRefPubMedGoogle Scholar
  26. Nishida, R., Baker, T.C., andRoelofs, W.L. 1982. Hairpencil pheromone components of male Oriental fruit moths,Grapholitha molesta. J. Chem. Ecol. 8:947–959.CrossRefGoogle Scholar
  27. Occolowitz, J.L. 1964. Mass spectrometry of naturally occurring alkenyl phenols and their derivatives.Anal. Chem. 36:2177–2181.CrossRefGoogle Scholar
  28. Parkes, G.D. 1948. Substitution in 3:4-dialkylphenols.J. Chem. Soc. 2143–2146.Google Scholar
  29. Schildknecht, H., andKoob, K. 1970. Pflanzliche Bioregulatoren als Inhaltsstoffe der Metathorakaldrüsen der Knotenameisen.Angew. Chem. 82:181. (Int. Engl. Ed. 9:173).Google Scholar
  30. Schildknecht, H., andKoob, K. 1971. Myrmicacin, das erste Insekten-Herbicid.Angew. Chem. 83:110. (Int. Engl. Ed. 10:124).Google Scholar
  31. Skopp, G., Opferkuch, H.J., andSchwenker, G. 1987.n-Alkylphenole ausSchinus terebinthifolius Raddi (Anacardiaceae).Z. Naturforsch 42c:7–16.Google Scholar
  32. Stenhagen, E., Abrahamson, S., andMcLafferty, F.W. 1974. Registry of Mass Spectral Data. Wiley-Interscience, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. B. Attygalle
    • 1
  • B. Siegel
    • 1
  • O. Vostrowsky
    • 1
  • H. J. Bestmann
    • 1
  • U. Maschwitz
    • 2
  1. 1.Institute for Organic ChemistryUniversity of Erlangen-NürnbergErlangenF.R.G.
  2. 2.Institute for ZoologyUniversity of FrankfurtFrankfurtF.R.G.

Personalised recommendations