Journal of Chemical Ecology

, Volume 21, Issue 9, pp 1329–1338 | Cite as

Interfamily variation in comb wax hydrocarbons produced by honey bees

  • Michael D. Breed
  • Robert E. PageJr.
  • Bruce E. Hibbard
  • Louis B. Bjostad


The hydrocarbons of honeybee comb wax vary significantly between colonies. This variation is explained in part by genetic (familial) differences among colonies. Even though significant differences in wax hydrocarbons exist among families, there is a high level of consistency within and among families in a correlation analysis, indicating structural constancy in comb wax. The significance of these results in interpreting the potential role of comb wax in the nestmate recognition system of the honeybee is discussed.

Key Words

Honeybee comb wax hydrocarbons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. Rothman, E.D., Kerr, W.E. andPaulino, Z.L. 1977. Estimation of the number of sex alleles and queen matings from diploid male frequencies in a population ofApis mellifera.Genetics 86:583–596.PubMedGoogle Scholar
  2. Blomquist, G.J., Chu, A.J., andRamaley, S. 1980. Biosynthesis of wax in the honey bee,Apis mellifera L.Insect Biochem. 10:313–321.Google Scholar
  3. Breed, M.D. 1983. Nestmate recognition in honey bees.Anim. Behav. 31:86–91.Google Scholar
  4. Breed, M.D., andStiller, T.M. 1992. Honey bee,Apis mellifera, nestmate discrimination: Hydrocarbon effects and the evolutionary implications of comb choice.Anim. Behav. 43:875–883.Google Scholar
  5. Breed, M.D., Fewell, J.H., andWilliams, K.R. 1988a. Comb wax mediates the acquisition of nest-mate recognition cues in honey bees.Proc. Natl. Acad. Sci. U.S.A. 85:8766–8769.Google Scholar
  6. Breed, M.D., Stiller, T.M., andMoor, M.J. 1988b. The ontogeny of kin discrimination cues in the honey bee,Apis mellifera.Behav. Genet. 18:439–448.PubMedGoogle Scholar
  7. Breed, M.D., Garry, M.F., Pearce, A.N., Hibbard, B.E., Bjostad, L.B., andPage, R.E. Jr. 1995. The role of comb wax in honey bee nestmate recognition: Genetic effects on comb discrimination, acquisition of comb cues by bees, and passage of cues to individuals.Anim. Behav. 50:489–496.Google Scholar
  8. Carlson, D.A. 1988. Africanized and European honey-bee drones and comb-waxes: Analysis of hydrocarbon components for identification, pp. 264–274,in G.R. Needham, R.E. Page, M. Delfinado-Baker, and C.E. Bowman (eds.). Africanized Honey Bees and Bee Mites. Ellis Horwood Ltd., Chichester, UK.Google Scholar
  9. Carlson, D.A., andBolton, A.B. 1984. Identification of Africanized and European honey bees using extracted hydrocarbons.Bull. Entomol. Soc. Am. 30:32–35.Google Scholar
  10. Clement, J.-L., Bonavita-Cougourdan, A., andLange, C. 1987. Nestmate recognition and cuticular hydrocarbons inCamponotus vagus, pp. 473–474,in J. Eder and H. Rembold (eds.). The Chemistry and Biology of Social Insects. Verlag J. Peperny, Munich.Google Scholar
  11. Francis, B.R., Blanton, W.E., andNunamaker, R.A. 1985. Extractable surface hydrocarbons of workers and drones of the genusApis.J. Apic. Res. 24:13–26.Google Scholar
  12. Francis, B.R., Blanton, W.E., Littlefield, J.L., andNunamaker, R.A. 1989. Hydrocarbons of the cuticle and hemolymph of the adult honey bee.Ann. Entomol. Soc. Am. 82:486–494.Google Scholar
  13. Getz, W.M., andPage, R.E. 1991. Chemosensory kin-communication systems and kin recognition in honey bees.Ethology 87:298–315.Google Scholar
  14. Hadley, N.F. 1989. Lipid water barriers in biological systems.Prog. Lipid. Res. 28:1–33.PubMedGoogle Scholar
  15. Hepburn, H.R. 1986. Honey Bees and Wax. Springer-Verlag, Berlin.Google Scholar
  16. Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226,in D.W. Stanley-Samuelson and D.R. Nelson, (eds.). Insect Lipids. University of Nebraska Press, Lincoln.Google Scholar
  17. Markow, T.A., andToolson, E.C. 1990. Temperature effects on epicuticular hydrocarbons on sexual isolation inDrosophila mojavensis, pp. 315–331,in J.S.F. Barker, W.T. Starmer, and R.J. MacIntyre, (eds.). Ecological and Evolutionary Genetics of Drosophila. Plenum, New York.Google Scholar
  18. Oldroyd, B.P., Rinderer, T.E., andBuco, S.M. 1991. Honey bees dance with their super-sisters.Anim. Behav. 42:121–129.Google Scholar
  19. Page, R.E., Metcalf, R.A., Metcalf, R.L., Erickson, E.H., andLampman, R.L. 1991. Extractable hydrocarbons and kin recognition in honeybee (Apis mellifera L.).J. Chem. Ecol. 17:745–756.Google Scholar
  20. Pamilo, P., andCrozier, R.H. 1982. Measuring genetic relatedness in natural populations: Methodology.Theor. Pop. Biol. 21:171–193.Google Scholar
  21. Ratnieks, F.L.W. 1991. The evolution of genetic odor-cue diversity in social Hymenoptera.Am. Nat. 137:202–226.Google Scholar
  22. Singer, T.L., andEspelie, K.E. 1992. Social wasps use nest paper hydrocarbons for nestmate recognition.Anim. Behav. 44:63–68.Google Scholar
  23. Smith, R.-K. 1990. Chemotaxonomy of honey bees (Apis mellifera L.). Part I: European and African workers.Bee Sci. 1:23–32.Google Scholar
  24. Smith, B.H., andBreed, M.D. 1995. The chemical basis for nestmate recognition and mate discrimination in social insects,in R.T. Cardé and W.J. Bell (eds.). Chemical Ecology of Insects II. Chapman and Hall, New York. 287–317.Google Scholar
  25. Tulloch, A.P. 1980. Beeswax—composition and analysis.Bee World 61:47–62.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Michael D. Breed
    • 1
  • Robert E. PageJr.
    • 2
  • Bruce E. Hibbard
    • 3
  • Louis B. Bjostad
    • 3
  1. 1.Department of Environmental, Population, and Organismic BiologyThe University of ColoradoBoulder
  2. 2.Department of EntomologyThe University of California, DavisDavis
  3. 3.Department of EntomologyColorado State UniversityFort Collins

Personalised recommendations