Journal of Chemical Ecology

, Volume 21, Issue 9, pp 1245–1253 | Cite as

Secondary chemistry of hybrid and parental willows: Phenolic glycosides and condensed tannins inSalix sericea, S. eriocephala, and their hybrids

  • Colin M. Orians
  • Robert S. Fritz
Article

Abstract

Salix sericea andS. eriocephala differ markedly in secondary chemistry.S. sericea produces phenolic glycosides, salicortin and 2′-cinnamoylsalicortin, and low concentrations of condensed tannin. In contrast,S. eriocephala produces no phenolic glycosides, but high concentrations of condensed tannins. Hybrid chemistry is intermediate for both types of chemicals, suggesting predominantly additive inheritance of these two defensive chemical systems from the parental species. However, there is extensive variation among hybrids. This variation may be due to genetic variation among parental genotypes, which genes were passed on, or to subsequent back-crossing. The differences in chemistry are likely to exert a strong effect on the relative susceptibility of hybrid and parental willows to herbivores.

Key Words

Salicaceae willows hybrids hybridization phenolic glycosides salicortin 2′-cinnamoylsalicortin condensed tannins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, J.M., andBoecklen, W.J. 1992. Patterns of herbivory in theQuercus grisea × Quercus gambelii species complex.Oikos 64:498–504.Google Scholar
  2. Argus, G.W. 1986. The genusSalix (Salicaceae) in the southeastern United States.Syst. Bot. Monogr. 9:1–170.Google Scholar
  3. Barton, N.H., andHewitt, G.M. 1985. Analysis of hybrid zones.Annu. Rev. Ecol. System. 16:113–148.Google Scholar
  4. Basey, J.M., Jenkins, S.H., andBusher, P.E. 1988. Optimal central-place foraging by beavers: Tree size selection in relation to defensive chemicals of quaking aspen.Oecologia 76:278–282.Google Scholar
  5. Berenbaum, M.R., Zangerl, A.R., andNitao, J.K. 1986. Constraints on chemical coevolution: Wild parsnips and the parsnip webworm.Evolution 40:1215–1228.Google Scholar
  6. Boecklen, W.J., andSpellenberg, R. 1990. Structure of herbivore communities in two oak (Quercus spp.) hybrid zones.Oecologia 85:92–100.Google Scholar
  7. Bryant, J.P., Clausen, T.P., Reichardt, P.B., McCarthy, M.C., andWerner, R.A. 1987. Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix [Choristoneura conflictana (Walker)].Oecologia 73:513–517.Google Scholar
  8. Clausen, T.P., Reichardt, P.B., Bryant, J.P., Werner, R.A., Post, K., andFrisby, K. 1989. Chemical model for short-term induction in quacking aspen (Populus tremuloides) foliage against herbivores.J. Chem. Ecol. 15:2335–2346.Google Scholar
  9. Denno, R.F., Larsson, S., andOlmstead, K.L. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles.Ecology 71:124–137.Google Scholar
  10. Floate, K.D., andWhitman, T.G. 1993. The “hybrid bridge” hypothesis: Host shifting via plant hybrid swarms.Am. Nat. 141:651–662.Google Scholar
  11. Fritz, R.S., Nichols-Orians, C.M., andBrunsfeld, S.J. 1994. Interspecific hybridization of plants and resistance to herbivores: Hypotheses, genetics, and variable responses in a diverse herbivore community.Oecologia 97:106–117.Google Scholar
  12. Hagerman, A.E., andButler, L.G. 1989. Choosing appropriate methods and standards for assaying tannin.J. Chem. Ecol. 15:1795–1810.Google Scholar
  13. Huesing, J., Jones, D., Deverna, J., Myers, J., Collins, G., Severson, R., andSisson, V. 1989. Biochemical investigations of antibiosis material in leaf exudate of wildNicotiana species and interspecific hybrids.J. Chem. Ecol. 15:1203–1217.Google Scholar
  14. Julkunen-Tiitto, R. 1986. A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species.Phytochemistry 25:663–667.Google Scholar
  15. Julkunen-Tiitto, R. 1989. Phenolic constituents ofSalix: A chemotaxonomic survey of further Finnish species.Phytochemistry 28:2115–2125.Google Scholar
  16. Julkunen-Tiitto, R., Tahvanainen, J., andSilvola, J. 1993. Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals inSalix myrsinifolia (Salisb.).Oecologia 95:495–498.Google Scholar
  17. Kolehmainen, J., Roininen, H., Julkunen-Tiitto, R., andTahvanainen, J. 1994. Importance of phenolic glucosides in host selection of shoot galling sawfly,Euura amerinae, onSalix pentandra.J. Chem. Ecol. 20:2455–2466.Google Scholar
  18. Levy, A., andMilo, J. 1991. Inheritance of morphological and chemical characters in interspecific hybrids betweenPapaver bracteatum andPapaver pseudo-orientale.Theor. Appl. Genet. 81:537–540.Google Scholar
  19. Lindroth, R.L., andPeterson, S.S. 1988. Effects of plant phenols on performance of southern armyworm larvae.Oecologia 75:185–189.Google Scholar
  20. Lindroth, R.L., Hsia, M.T.S., andScriber, J.M. 1987. Characterization of phenolic glycosides from quaking aspen.Biochem. Syst. Ecol. 15:677–680.Google Scholar
  21. Lindroth, R.L., Scriber, J.M., andHsia, M.T.S. 1988. Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides.Ecology 69:814–822.Google Scholar
  22. Marquis, R.J. 1990. Genotypic variation in leaf damage inPiper arieianum (Piperaceae) by a multispecies assemblage of herbivores.Evolution 44:104–120.Google Scholar
  23. Meier, B., Bettschart, A., Shao, Y., andLautenschlager, E. 1989. Einsatz der modernen HPLC fur chemotaxonomische Untersuchungen morphologisch schwer zu differenzierenderSalix-Hybriden.Planta Med. 55:213–214.Google Scholar
  24. Nichols-Orians, C.M., Clausen, T.P., Fritz, R.S., Reichardt, P.B., andWu, J. 1992. A new phenolic glycoside isolated fromSalix sericea Marshall.Phytochemistry 31:2180–2181.Google Scholar
  25. Nichols-Orians, C.M., Fritz, R.S., andClausen, T.P. 1993. The genetic basis for variation in the concentration of phenolic glycosides inSalix sericea: Clonal variation and sex-based differences.Biochem. Syst. Ecol. 21:535–542.Google Scholar
  26. O'Donoughue, L.S., Raelson, J.V. andGrant, W.F. 1990. A morphological study of interspecific hybrids in the genusLotus (Fabaceae).Can. J. Bot. 68:803–812.Google Scholar
  27. Orians, C.M. 1995. Preserving leaves for tannin and phenolic glycoside analyses: A comparison of methods using three willow taxa.J. Chem. Ecol. 21:1235–1243.Google Scholar
  28. Paige, K.N., andCapman, W.C. 1993. The effects of host-plant genotype, hybridization, and environment on gall-aphid attack and survival in cottonwood: The importance of genetic studies and the utility of RFLPS.Evolution 47:36–45.Google Scholar
  29. Price, P.W., Waring, G.L., Julkunen-Thtto, R., Tahvanainen, J., Mooney, H.A., andCraig, T.P. 1989. Carbon-nutrient balance hypothesis in within-species phytochemical variation ofSalix lasiolepis.J. Chem. Ecol. 15:1117–1131.Google Scholar
  30. Rabotyagov, V.D. andAkimov, Y.A. 1987. Inheritance of essential oil content and composition in interspecific hybridization of lavender.Sov. Genet. 22:1163–1172.Google Scholar
  31. Reiseberg, L.H., andBrunsfeld, S.J. 1992. Molecular evidence and plant introgression, pp. 151–176,in P.S. Soltis, D.E. Soltis, and J.D. Doyle (eds.). Molecular Systematics of Plants. Chapman and Hall, New York.Google Scholar
  32. Rieseberg, L.H., andEllstrand, N.C. 1993. What can molecular and morphological markers tell us about plant hybridization.Crit. Rev. Plant Sci. 12:213–241.Google Scholar
  33. Rowell-Rahier, M. 1984. The presence or absence of phenolglycosides inSalix (Salicaceae) leaves and the level of dietary specialization of some of their herbivorous insects.Oecologia 62:26–30.Google Scholar
  34. Schultz, J.C. 1989. Tannin-insect interactions, pp. 417–433,in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.Google Scholar
  35. Tahvanainen, J., Julkunen-Thtto, R., andKettunen, J. 1985a. Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles.Oecologia 67:52–56.Google Scholar
  36. Tahvanainen, J., Helle, E., Julkunen-Thtto, R. andLavola, A. 1985b. Phenolic compounds of willow bark as deterrents against feeding by mountain hare.Oecologia 65:319–323.Google Scholar
  37. Whitham, T.G. 1989. Plant hybrid zones as sinks for pests.Science 244:1490–1493.Google Scholar
  38. Whitham, T.G., Morrow, P.A., andPotts, B.M. 1991. Conservation of hybrids.Science 254:779–780.Google Scholar
  39. Whitham, T.G., Morrow, P.A., andPotts, B.M. 1994. Plant hybrid zones as centers of biodiversity: The herbivore community of two endemic Tasmanian eucalypts.Oecologia 97:481–490.Google Scholar
  40. Zucker, W.V. 1983. Tannins: Does structure determine function? An ecological perspective.Am. Nat. 121:335–365.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Colin M. Orians
    • 1
  • Robert S. Fritz
    • 2
  1. 1.Department of BiologyWilliams CollegeWilliamstown
  2. 2.Department of BiologyVassar CollegePoughkeepsie

Personalised recommendations