Skip to main content
Log in

Biophysical properties of porin pores from mitochondrial outer membrane of eukaryotic cells

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The matrix space of mitochondria is surrounded by two membranes. The mitochondrial inner membrane contains the respiration chain and a large number of highly specific carriers for the mostly anionic substrates of mitochondrial metabolism. In contrast to this the permeability properties of the mitochondrial outer membrane are by far less specific. It acts as a molecular sieve for hydrophilic molecules with a defined exclusion limit around 3000 Da. Responsible for the extremely high permeability of the mitochondrial outer membrane is the presence of a pore-forming protein termed mitochondrial porin. Mitochondrial porins have been isolated from a variety of eukaryotic cells. They are basic proteins with molecular masses between 30 and 35 kDa. Reconstitution experiments define their function as pore-forming components with a single-channel conductance of about 0.40 nS (nano Siemens) in 0.1 M KCl at low voltages. In the open state mitochondrial porin behaves as a general diffusion pore with an effective diameter of 1.7 nm. Eukaryotic porins are slightly anion-selective in the open state but become cation-selective after voltage-dependent closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benz, R., Porins from bacterial and mitochondrial outer membranes. CRC Cr. Rev. Biochem.19 (1985) 145–190.

    Article  CAS  Google Scholar 

  2. Benz, R., Structure and function of porins from gram-negative bacteria. A. Rev. Microbiol.42 (1988) 359–393.

    Article  CAS  Google Scholar 

  3. Benz, R., Janko, K., Boos, W., and Läuger, P., Formation of large, ion-permeable membrane channels by the matrix protein (porin) ofEscherichia coli. Biochim. biophys. Acta511 (1978) 305–319.

    Article  CAS  PubMed  Google Scholar 

  4. Benz, R., Janko, K., and Läuger, P., Ionic selectivity of pores formed by the matrix protein (porin) ofEscherichia coli. Biochim. biophys. Acta551 (1979) 238–247.

    Article  CAS  PubMed  Google Scholar 

  5. Benz, R., Ludwig, O., De Pinto, V., and Palmieri, F., Permeability properties of mitochondrial porins of different eukaryotic cells, in: Achievements and Perspectives of Mitochondrial Research, vol. 1, pp. 317–327. Eds Quagliarello et al. Elsevier, Amsterdam 1985.

    Google Scholar 

  6. Benz, R., Wojtczak, L., Bosch, W., and Brdiczka, D., Inhibition of adenine nucleotide transport through the mitochondrial porin by a synthetic polyanion. FEBS Lett.210 (1988) 75–80.

    Article  Google Scholar 

  7. Bessman, S. P., and Carpenter, C. L., The creatine creatine-phosphate energy shuttle. A. Rev. Cytochem.54, (1985) 831–865.

    CAS  Google Scholar 

  8. Brdiczka, D., Knoll, G., Riesinger, I., Weiler, U., Klug, G., Benz, R., and Krause, J., Microcompartmentation at the mitochondrial surface: its function in metabolic regulation, in: Myocardial and Skeletal Muscle Bioenergetics, pp. 55–69. Ed. N. Brautbar. Plenum Press, New York 1986.

    Chapter  Google Scholar 

  9. Colombini, M., A candidate for the permeability pathway of the outer mitochondrial membrane. Nature279 (1979) 643–645.

    Article  CAS  PubMed  Google Scholar 

  10. Colombini, M., Pore size and properties of channels from mitochondria isolated fromNeurospora crassa, J. Membr. Biol.53 (980) 79–84.

  11. Colombini, M., Holden, M.J., and Mangan, P., Modulation of the mitochondrial channel VDAC by a variety of agents, in: Anion Carriers of Mitochondrial Membranes, pp. 215–224. Eds A. Azzi et al. Springer, Heidelberg/New York 1989.

    Chapter  Google Scholar 

  12. De Pinto, V., Ludwig, O., Krause, J., Benz, R., and Palmieri, F., Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim. biophys. Acta894 (1987) 109–119.

    Article  PubMed  Google Scholar 

  13. De Pinto, V., Prezioso, G., and Palmieri, F., A simple and rapid method for the purification of the mitochondrial porin from mammalian sources. Biochim. biophys. Acta905 (1987) 499–502.

    Article  PubMed  Google Scholar 

  14. Dihanich, M., Schmid, A., Oppliger, W., and Benz, R., Identification of a new pore in the mitochondrial outer membrane of a porin-deficient yeast mutant. Eur. J. Biochem.181 (1989) 703–708.

    Article  CAS  PubMed  Google Scholar 

  15. Fiek, C., Benz, R., Roos, N., and Brdiczka, D., Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim. biophys. Acta688 (1982) 429–440.

    Article  CAS  PubMed  Google Scholar 

  16. Freitag, H., Neupert, W., and Benz, R., Purification and characterization of a pore protein of the outer mitochondrial membrane fromNeurospora crassa. Eur. J. Biochem.123 (1982) 629–636.

    Article  CAS  PubMed  Google Scholar 

  17. Gellerich, F. N., Schlame, M., Bohnensack, R., and Kunz, W., Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim. biophys. Acta890 (1987) 117–126.

    Article  CAS  PubMed  Google Scholar 

  18. Kleene, R., Pfanner, N., Pfaller, R., Link, T.A., Sebald, W., Neupert, W., and Tropschug, M., Mitochondrial porin ofNeurospora crassa: cDNA cloning, in vitro expression and import into mitochondria. EMBO J.9 (1987) 2627–2633.

    Article  Google Scholar 

  19. König, T., Kocsis, B., Meszarols, L., Nahm, K., Zoltan, S., and Horvath, I., Interaction of a synthetic polyanion with rat liver mitochondria. Biochim. biophys. Acta462 (1977) 380–389.

    Article  PubMed  Google Scholar 

  20. König, T., Stipani, I., Horvath, I., and Palmieri, F., Inhibition of mitochondrial substrate anion translocators by a synthetic amphipatic polyanion. J. Bioenerg. Biomembr.14 (1982) 297–305.

    Article  PubMed  Google Scholar 

  21. Lindén, M., Gellerfors, P., and Nelson, B. D., Purification of a protein having pore forming activity from the rat liver mitochondrial outer membrane. Biochem. J.208 (1982) 77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lindén, M., Gellerfors, P. and Nelson, B.D., Pore protein and hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical. FEBS Lett.141 (1982) 189–192.

    Article  PubMed  Google Scholar 

  23. Ludwig, O., Benz, R., and Schultz, I. E., Porin ofParamecium mitochondria: Isolation, characterization and ion selectivity of the closed state. Biochim. biophys. Acta978 (1989) 319–327.

    Article  CAS  PubMed  Google Scholar 

  24. Ludwig, O., De Pinto, V., Palmieri, F., and Benz, R., Pore formation by the mitochondrial porin of rat brain mitochondria. Biochim. biophys. Acta860 (1986) 268–276.

    Article  CAS  PubMed  Google Scholar 

  25. Ludwig, O., Krause, J., Hay, R., and Benz, R., Purification and characterization of the pore forming protein of yeast mitochondrial outer membrane. Eur. Biophys. J.15 (1988) 269–276.

    Article  CAS  PubMed  Google Scholar 

  26. Mannella, C. A., and Frank, J., Negative staining characteristics of arrays of mitochondrial pore protein: Use of correspondence analysis to classify different staining patterns. Ultramicroscopy13 (1984) 93–102.

    Article  CAS  PubMed  Google Scholar 

  27. Mannella, C. A., and Frank, J., Electron microscopic stains as probes of the surface charge of mitochondrial outer membrane channels. Biophys. J.45 (1984) 139–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michejda, J., Guo, X. J., and Lauquin, G. J.-M., Bioenergetic consequences of the lack of mitochondrial porin: Identification of a putative new pore, in: Anion Carriers of Mitochondrial Membranes, pp. 225–235. Eds A. Azzi et al. Springer, Heidelberg/New York 1989.

    Chapter  Google Scholar 

  29. Mihara, K., and Sato, R., Molecular cloning and sequencing of cDNA of yeast porin, an outer mitochondrial membrane protein: a search for targeting signal in the primary structure. EMBO J.4 (1985) 769–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohlendieck, K., Riesinger, I., Adams, V., Krause, J., and Brdiczka, D., Enrichment and biochemical characterization of boundary membrane contact sites in rat-liver mitochondria. Biochim. biophys. Acta860 (1986) 672–689.

    Article  CAS  PubMed  Google Scholar 

  31. Roos, N., Benz, R. and Brdiczka, D., Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria. Biochim. biophys. Acta686 (1982) 204–214.

    Article  CAS  PubMed  Google Scholar 

  32. Schein, S. J., Colombini, M., and Finkelstein, A., Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained fromParamecium mitochondria. J. Membr. Biol.30 (1976) 99–120.

    Article  CAS  PubMed  Google Scholar 

  33. Wojtczak, L., and Zaluska, H., On the impermeability of the outer mitochondrial membrane to cytochrome c: I. Studies on whole mitochondria. Biochim. biophys. Acta193 (1969) 64–72.

    Article  CAS  PubMed  Google Scholar 

  34. Zalman, L. S., Nikaido, H., and Kagawa, Y., Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J. biol. Chem.255 (1980) 1771–1774.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, R. Biophysical properties of porin pores from mitochondrial outer membrane of eukaryotic cells. Experientia 46, 131–137 (1990). https://doi.org/10.1007/BF02027308

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02027308

Key words

Navigation