Agents and Actions

, Volume 38, Supplement 1, pp 66–75 | Cite as

Are leukotrienes or PAF involved in hyperbaric oxygen toxicity?

  • Yiguang Lin
  • Dana Jamieson
Inflammation
  • 22 Downloads

Abstract

Several very selective leukotriene inhibitors, and a PAF inhibitor, suitable forin vivo use, have been tested for their effects on hyperbaric oxygen toxicity.

The leukotriene D4 inhibitor, L660 771, and the 5-lipoxygenase pathway inhibitor L663 563, failed to affect convulsions or lung damage induced by hyperbaric oxygen (pressure range 515–615 kPa) in either rats or mice. The specific PAF antagonist L659 989 showed marginal protection against hyperoxic convulsions and did not alter pulmonary damage. The specific LTB4 antagonist SC-41930 was very effective in inhibiting hyperbaric oxygen-induced convulsions in both rats and mice. SC-41930 also very significantly protected rats against pulmonary oxygen toxicity, but had only marginally significant effects on pulmonary protection in mice.

Keywords

Pathway Inhibitor Hyperbaric Oxygen LTB4 Lung Damage Oxygen Toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Clark and C. J. Lambertsen,Pulmonary oxygen toxicity: A review. Pharmacol. Rev.23, 37–133 (1971).PubMedGoogle Scholar
  2. [2]
    D. D. Jamieson and H. A. S. van den Brenk,Pulmonary damage due to high pressure oxygen breathing in rats 3. Quantitative analysis of fluid changes in rats lungs. Aust. J. Exp. Biol. Med. Sci.40, 309–314 (1962).PubMedGoogle Scholar
  3. [3]
    D. Jamieson,Oxygen toxicity and reactive oxygen metabolites in mammals. Free Radical Biol. Med.7, 87–108 (1989).Google Scholar
  4. [4]
    N. N. Boyce, D. Campbell and S. R. Holdsworth,Granulocyte independence of pulmonary oxygen toxicity in the rat. Exp. Lung Res.15, 491–498 (1989).PubMedGoogle Scholar
  5. [5]
    M. J. Laughlin, L. Wild, P. A. Nickerson and S. Matalon,Effects of hyperoxia on alveolar permeability of neutropenic rabbits. J. Appl. Physiol.61, 1126–1131 (1986).PubMedGoogle Scholar
  6. [6]
    D. M. Shasby, R. B. Fox, R. N. Harada and J. E. Repine,Reduction of the edema of acute hyperoxic lung injury by granulocyte depletion. J. Appl. Physiol.52, 1237–1244 (1982).PubMedGoogle Scholar
  7. [7]
    G. J. Dusting and A. G. Stewart,Overview of eicosanoid metabolism and relationship to platelet-activating factor. Reprod. Fertil. Dev.2, 417–421 (1990).Google Scholar
  8. [8]
    S. E. Dahlen, J. Bjork, P. Hedqvist, K. E. Arfors, S. Hammarstrom, J. A. Lindgren and B. Samuelsson,Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivoeffects with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. USA,78, 3883–3891 (1981).Google Scholar
  9. [9]
    P. Hedqvist, S. E. Dahlen, L. Gustafsson, S. Hammarstrom and B. Samuelsson,Biological profile of leukotrienes C 4 and D 4. Acta Physiol. Scand.110, 331–333 (1980).PubMedGoogle Scholar
  10. [10]
    H. Taniguchi, F. Taki, K. Takagi, T. Satake, S. Sugiyama and T. Ozawa,The role of leukotriene B 4 in the genesis of oxygen toxicity in the lung. Am. Rev. Respir. Dis.133, 805–808 (1986).PubMedGoogle Scholar
  11. [11]
    L. J. Smith, M. Shamsuddin, J. J. Anderson and W. Hsueh,Hyperoxic lung damage in mice: Appearance and bioconversion of peptide leukotrienes. J. Appl. Physiol.64, 944–951 (1988).PubMedGoogle Scholar
  12. [12]
    S. N. Giri and D. M. Hyde,Increases in severity of lung damage and mortality by treatment with cyclo and lipoxygenase inhibitors in bleomycin and hyperoxia model of lung injury in hamsters. Pathology19, 150–158 (1987).PubMedGoogle Scholar
  13. [13]
    J. Gillard, A. W. Fort-Hutchinson, C. Chan, S. Charleson, D. Denis, A, Foster, R. Fortin, S. Leger, C. S. McFarlane, H. Morton, H. Piechuta, D. Riendeau, C. A. Rouzer, J. Rokach, R. Young, D. E. MacIntyre, L. Peterson, T. Bach, G. Eiermann, S. Hopple, J. Humes, L. Hupe, S. Luell, J. Metzger, R. Meurer, D. K. Miller, E. Opas and S. Pacholok,L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can. J. Physiol. Pharmacol.67, 456–464 (1989).PubMedGoogle Scholar
  14. [14]
    T. R. Jones, R. Zamboni, M. Belley, E. Champion, L. Charette, A. W. Ford-Hutchinson, R. Frenette, J-Y. Gauthier, S. Leger, P. Masson, C. McFarlane, H. Piechuta, J. Rokach, H. Williams, R. N. Young, R. N. DeHaven and S. S. Pong,Pharmacology of L-660,711 (MK-571): A novel potent and selective leukotriene D 4 receptor antagonist, Can. J. Physiol. Pharmacol.67, 17–28 (1989).PubMedGoogle Scholar
  15. [15]
    M. M. Ponpipom, S.-B. Hwang, T. W. Doebber, J. J. Acton, A. W. Alberts, T. Biftu, D. R. Brooker, R. L. Bugianesi, J. C. Chabala, N. L. Gamble, D. W. Graham, M-H. Lam and M. G. Wu, (±)-Trans-2-(3-methoxy-5-methylsulfonyl-4-propoxyphenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (L-659,989), a novel, potent PAF receptor antagonist. Biochem. Biophys. Res. Commun.150, 1213–1220 (1988).PubMedGoogle Scholar
  16. [16]
    D. Jamieson and J. Carmody,Low temperature worsens mammalian oxygen toxicity. Aviat. Space Environ. Med.60, 639–643 (1989).PubMedGoogle Scholar
  17. [17]
    N. F. Voelkel, K. R. Stenmark, J. T. Reeves, M. M. Mathias and R. C. Murphy,Action of lipoxygenase metabolites in isolated rat lung. J. Appl. Physiol.57, 860–867.Google Scholar
  18. [18]
    O. C. Burghuber, R. J. Strife, J. Zirolli, P. M. Henson, J. E. Henson, M. M. Mathias, J. T. Reeves, R. C. Murphy and N. F. Voelkel,Leukotriene inhibitors attenuate rat lung injury induced by hydrogen peroxide. Am. Rev. Respir. Dis.131, 778–785 (1985).PubMedGoogle Scholar
  19. [19]
    G. H. Gurtner, I. S. Farrukh, N. F. Adkinson, A. M. Sciuto, J. M. Jacobson and J. R. Michael,The role of arachidonate mediators in peroxide-induced lung injury, Am. Rev. Respir. Dis.136, 480–483 (1987).PubMedGoogle Scholar
  20. [20]
    J. Klein, F. J. Zijlstra, J. E. Vincent, R. Van Strik, C. J. A. M. Tak and W. P. Van Schalwijk,Cellular and eicosanoid composition of bronchoalveolar lavage fluid in endotoxin protection against pulmonary oxygen toxicity. Crit. Care Med.17, 247–250 (1989).PubMedGoogle Scholar
  21. [21]
    R. M. Jackson, D. B. Chandler and J. D. Fulmer,Production of arachidonic acid metabolites by endothelial cells in hyperoxia. J. Appl. Physiol.61, 584–591 (1986).PubMedGoogle Scholar
  22. [22]
    W. R. Henderson and S. J. Klebanoff,Leukotriene B 4,C 4 and E 4 inactivation by hydroxyl radicals, Biochem. Biophys. Res. Commun.110, 266–272 (1983).PubMedGoogle Scholar
  23. [23]
    M. J. James, L. G. Cleland and R. A. Gibson,Inhibition of human neutrophil leukotriene B 4 synthesis by combination auranofin and eicosapentaenoic acid. Biochem. Pharmacol.43, 695–700 (1992).PubMedGoogle Scholar
  24. [24]
    J. W. Bean, P. Zee, and B. Thom,Pulmonary changes with convulsions induced by drugs. J. Appl. Physiol.21, 865–872 (1966).PubMedGoogle Scholar
  25. [25]
    D. J. Fretland, D. L. Widomski, C. P. Anglin and T. S. Gaginella,The antiinflammatory agent SC-41930 inhibits granulocyte infiltration of the rodent dermis induced by 6-trans-leukotriene B 4. Prostaglandius Leukot. Essent. Fatty Acids44, 61–65 (1991).Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Yiguang Lin
    • 1
  • Dana Jamieson
    • 1
  1. 1.School of Physiology and PharmacologyUniversity of New South WalesKensingtonAustralia

Personalised recommendations