Dihydrolipoic acid protects pancreatic islet cells from inflammatory attack


In vitro models of pancreatic islet cell inflammation are the lysis of isolated islet cells by activated macrophages or by oxygen radicals released by the endothelial enzyme xanthine oxidase. Dihydrolipoic acid protected islet cells in both systems by different modes of action. Macrophage cytotoxicity towards islet cells, which is nitric-oxide-mediated, was suppressed by 2 h of preincubation of macrophages with lipoic acid. Similarly, 2 h of preincubation sufficed to protect islet cells against enzymatically produced oxygen radicals. Dihydrolipoic acid was found by chemiluminescence assay to scavenge directly such radicals. In macrophages dihydrolipoic acid suppressed the production of nitrite as a measure of nitric oxide release. These results suggest that dihydrolipoic acid is an anti-inflammatory agent which at the same time interferes with nitric oxide release from inflammatory macrophages and protects target cells from oxygen radical attack.

This is a preview of subscription content, log in to check access.


  1. [1]

    W. J. Malaisse, F. Malaisse-Lagae, A. Sener and D. G. Pipeleers,Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proc. Natl. Acad. Sci. USA79, 927–930 (1982).

    PubMed  Google Scholar 

  2. [2]

    B. Appels, V. Burkart, G. Kantwerk-Funke, J. Funda, V. Kolb-Bachofen and H. Kolb,Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J. Immunol.142, 3803–3808 (1989).

    PubMed  Google Scholar 

  3. [3]

    K. D. Kröncke, V. Kolb-Bachofen, B. Berschick, V. Burkart and H. Kolb,Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem. Biophys. Res. Commun.175, 752–758 (1991).

    PubMed  Google Scholar 

  4. [4]

    V. Burkart, T. Koike, H.-H. Brenner and H. Kolb,Oxygen radicals generated by the enzyme xanthine oxidase lyse rat pancreatic islet cells in vitro. Diabetologia35, 1028–1034 (1992).

    PubMed  Google Scholar 

  5. [5]

    J. M. McCord,Oxygen-derived free radicals in postischemic tissue damage. New Engl. J. Med.312, 159–163 (1985).

    PubMed  Google Scholar 

  6. [6]

    D. N. Granger, M. E. Höllwarth and D. A. Parks,Ischemia reperfusion injury: Role of oxygen-derived free radicals. Acta Phys. Scand.548 (Suppl.), 47–63 (1986).

    Google Scholar 

  7. [7]

    Y. J. Suzuki, M. Tsuchiya and L. Packer,Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Rad. Res. Commun.15, 255–263 (1991).

    Google Scholar 

  8. [8]

    A. Bast and G. R. Haenen,Interplay between lipoic acid and glutathione in the protection against liposomal lipid peroxidation. Biochim. Biophys. Acta963, 558–561 (1988).

    PubMed  Google Scholar 

  9. [9]

    V. Kagan, S. Khan, C. Swanson, A. Shvedova, E. Serbinova and L. Packer,Antioxidant action of thioctic and dihydrolipoic acid. Free Rad. Biol. Med.9 (Suppl.) 15, (1990).

  10. [10]

    K. S. Wood, G. M. Buga, R. E. Byrns and L. J. Ignarro,Vascular smooth muscle-derived relaxing factor (MDRF) and its close similarity to nitric oxide. Biochem. Biophys. Res. Commun.170, 80–88 (1990).

    PubMed  Google Scholar 

  11. [11]

    T. Mosman,Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxic assays. J. Immunol. Meth.65, 55–63 (1983).

    Google Scholar 

  12. [12]

    F. Denizot and R. Lang,Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth.89, 271–277 (1986).

    Google Scholar 

  13. [13]

    D. Jancjic and C. B. Wollheim,Islet cell metabolism is reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia35, 482–485 (1992).

    PubMed  Google Scholar 

  14. [14]

    H. Scholich, M. E. Murphy and H. Sies,Antioxidanswirkung von Dihydrolipoat bei der mikrosomalen Lipidperoxidation und ihre Abhängigkeit von α-Tocopherol, in:Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure (Eds. H. O. Borbe and H. Ulrich) pp. 124–136, pmi Verlag, Frankfurt 1989.

    Google Scholar 

  15. [15]

    J. Barth and H. Scholich,Der Einfluß von DL-α-Liponsäure auf die Chemilumineszenz von Granulozyten und Monozyten in vitro, in:Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure (Eds. H. O. Borbe and H. Ulrich) pp. 154–162, pmi Verlag, Frankfurt 1989.

    Google Scholar 

  16. [16]

    B. Kallmann, V. Burkart, K. D. Kröncke, V. Kolb-Bachofen and H. Kolb,Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. Life Sci.51, 671–678 (1992).

    PubMed  Google Scholar 

  17. [17]

    K. Sakurai and T. Ogiso,Studies on the biological damage by active oxygen. III. Generation of hydroxyl radical and inhibition of insulin release in hypoxanthine-xanthine oxidase system in the presence of pancreatic islet cells. Yakugaku Zasshi109, 102–106 (1989).

    PubMed  Google Scholar 

  18. [18]

    J. S. Beckmann, T. W. Beckmann, J. Chen, P. A. Marshall and B. A. Freeman,Apparent hydroxyl radical production by peroxinitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA87, 1620–1624 (1990).

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Burkart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burkart, V., Koike, T., Brenner, H.-. et al. Dihydrolipoic acid protects pancreatic islet cells from inflammatory attack. Agents and Actions 38, 60–65 (1993). https://doi.org/10.1007/BF02027215

Download citation


  • Nitric Oxide
  • Nitrite
  • Xanthine
  • Islet Cell
  • Oxygen Radical