The Journal of Membrane Biology

, Volume 40, Supplement 1, pp 151–165 | Cite as

The mitochondria-rich cell of frog skin as hormone-sensitive “shunt-path”

  • C. L. Voûte
  • W. Meier


Further investigations about the role of the mitochondria-rich cell (MR cell) in hormone-mediated transport regulation in the epithelium of frog skin brought the following results: Unlike toad bladder, in frog skin the spontaneous potential difference cannot be reversed when Na transport is blocked. A similar situation is obtained when in addition to transport-blockade, one applies a chemical gradient for chloride to the epithelium. Under these conditions we found that in the intact preparation as well as in the separated epithelium: (i) the reversed current (RC) is linearly related to the number of MR cells; (ii) RC is mainly carried by a passive, transcellular chloride flux inwards and (iii) RC is sensitive to nor-adrenaline (10−7m). The beta-blocker propranolol abolishes this effect.

We propose that the MR cells are the sites of transepithelial shunt-path and that this chloride flux is transcellular. As it is hormone sensitive, it could be an important regulatory instrument for the regulation of overall salt transport (internal shorting).


Chloride Human Physiology Propranolol Reversed Current Chemical Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado, R.H., Dietz, T.H., Mullen, T.L. 1975. Chloride transport across isolated skin ofR. pipiens.Am. J. Physiol. 229:869Google Scholar
  2. Carasso, N., Favard, P., Jard, S., Rajerison, R. 1971. The isolated frog skin epithelium: I. Preparation and general structure in different physiological states.J. Microsc. 10:315Google Scholar
  3. De Weer, P., Crabbé, J. 1965. Le mode d'action de l'aldostérone.J. Physiol. (Paris) 57:600Google Scholar
  4. Ehrenfeld, J., Masoni, A., Garcia-Romeu, F. 1976. Mitochondria rich cells of frog skin in transport mechanisms: Morphological and kinetic studies of transepithelial excretion of methylene blue.Am. J. Physiol. 231:120Google Scholar
  5. Garcia-Romeu, F., Ehrenfeld, J. 1975. Chloride transport through the non-shortcircuited isolated skin ofR. esculenta.Am. J. Physiol. 228:845Google Scholar
  6. House, C.R. 1969. The role of glandular activity in the electrical response of amphibian skin to noradrenaline.J. Physiol. (Lond.) 202:631Google Scholar
  7. Jørgensen, C.B., Larsen, L.O. 1960. Hormonal control of moulting in amphibians. Nature (London)185:244Google Scholar
  8. Koefoed-Johnsen, V., Lyon, I., Ussing, H.H. 1973. Effect of Cu ion on permeability properties of isolated frog skin. Acta Physiol. Scand.396 (Suppl.) 102Google Scholar
  9. Kristensen, P. 1977 Effect of drugs on chloride transport across amphibian epithelia. (see p. 167, this issue)Google Scholar
  10. Leaf, A., Keller, A., Dempsey, F.E. 1964. Stimulation of sodium transport in toad bladder by acidification of mucosal medium.Am. J. Physiol. 207:547Google Scholar
  11. Lindemann, B., Voûte, C. 1976. Structure and function of the epidermis.In: Frog Neurobiology. p. 198. R. Llinas and W. Precht, editors. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  12. Ludens, J.H., Fanestil, D.D. 1972. Acidification of urine by the isolated urinary bladder of the toad.Am. J. Physiol. 223:1338Google Scholar
  13. Nielsen, R. 1969. The effect of aldosteronein vitro on the active sodium transport and moulting of the frog skin.Acta Physiol. Scand 77:85Google Scholar
  14. Rosen, S., Friedley, N.J. 1973. Carbonic anhydrase activity inrana pipiens skin: Biochemical and histochemical analysis.Histochemistry 36:1Google Scholar
  15. Rudneff, M. 1865. Ueber die epidermoidale Schicht der Froschhaut.Arch. Mikr. Anat. 1:295Google Scholar
  16. Scott, W.N., Sapirstein, V. 1974. Partition of tissue functions in epithelia: Localization of enzymes in “mitochondria-rich” cells of toad urinary bladder.Science 184:797Google Scholar
  17. Susuki, S., Ogawa, E., Inoue, Y. 1974. Effects of aldosterone, actinomycin D, puromycin and cycloheximide on RNA synthesis, carbonic anhydrase and ATPase activities of the kidney and on urinary excretion of sodium in adrenalectomized mice.J. Steroid Biochem. 7:429Google Scholar
  18. Ussing, H.H., Biber, T.U.L., Bricker, N.S. 1965. Exposure of the isolated frog skin to high potassium concentrations at the internal surface: II. Changes in epithelial cell volume, resistance and response to antidiuretic hormone.J. Gen. Physiol. 48:425Google Scholar
  19. Voûte, C.L., Dirix, R., Nielsen, R., Ussing, H.H. 1969. The effect of aldosterone on the isolated frog skin epithelium (R. temporaria): A morphological study.Exp. Cell Res. 57:448Google Scholar
  20. Voûte, C.L., Hänni, S. 1973. Relation between structure and function in frog skin.In: Transport mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors. p. 86. Munksgaard, CopenhagenGoogle Scholar
  21. Voûte, C.L., Hänni, S., Ammann, E. 1972. Aldosterone induced morphological changes in amphibian epitheliain vivo.J. Steroid Biochem. 3:161Google Scholar
  22. Voûte, C.L., Møllgard, K., Ussing, H.H. 1975a. Quantitative relationship between active sodium transport, expansion of endoplasmic reticulum and specialized vacuoles (“scalloped sacs”) in the outermost living cell layer of the frog skin epithelium (Rana temporaria).J. Membrane Biol. 21:273Google Scholar
  23. Voûte, C.L., Thummel, J., Brenner, M. 1975b. Aldosterone effect in the epithelium of frog skin: A new story about an old enzyme.J. Steroid Biochem. 6:1175Google Scholar
  24. Whitear, M. 1972. The location of silver in frog epidermis after treatment with Ranvier's method, and possible implication of the flask cells in transport.Z. Zellforsch. 133:455Google Scholar
  25. Whitear, M. 1974. The nerves in frog skin.J. Zool. 172:503Google Scholar
  26. Zeiske W., Lindemann, B. 1975. Blockage of Na-channels in frog skin by titration with protons and by chemical modification of COO groups.Pfluegers Arch. 355:R71Google Scholar

Copyright information

© Springer-Verlag New York Inc 1978

Authors and Affiliations

  • C. L. Voûte
    • 1
  • W. Meier
    • 1
  1. 1.The Laboratory of Experimental Nephrology, Department of Medicine-KantonsspitalUniversity of BaselBaselSwitzerland

Personalised recommendations