The Journal of Membrane Biology

, Volume 40, Supplement 1, pp 5–14 | Cite as

Physiology of transport regulation

  • Hans H. Ussing


The regulation of biological transport is discussed on the basis of studies on sodium transport through amphibian skin. The following types of regulation are briefly considered:
  1. 1)

    Hormonal regulation

  2. 2)

    Regulation of Na entry by apparent or real saturation of entry path by outside Na

  3. 3)

    Regulation of Na transport by changes in resistance to the counter ion (mostly chloride)

  4. 4)

    Role of cellular Na concentration which may act both by controlling the passive entry of Na and by influencing the pumping rate.

  5. 5)

    Dependence of Na entry upon cell volume. It is shown that a moderate osmotic swelling of ouabain-poisoned skins leads to excessive swelling of the whole epithelium when NaCl is present on the outside. This indicates that cell swelling leads to opening of the Na channels, but it also indicates coupling between the different layers of the epithelium.



Sodium Chloride Human Physiology Cell Volume Hormonal Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biber, T.U.L., Chez, R.A., Curran, P.F. 1966. N-transport across frog skin at low external sodium concentrations.J. Gen. Physiol. 49:1161Google Scholar
  2. Crabbé, J. 1964. Stimulation of active sodium transport by the urinary bladder of amphibia under the influence of aldosterone.In: Water and Electrolyte Metabolism. II. J. de Graeff and B. Leijnse, editors. p. 59. Elsevier Publishing Company, AmsterdamGoogle Scholar
  3. Edelman, I.S., Fimognari, G.M. 1968. On the biochemical mechanism of action of aldosterone.Rec. Prog. Horm. Res. 24:1Google Scholar
  4. Erlij, D. 1971. Salt transport across isolated frog skin.Phil. Trans. R. Soc. (London) B 262:153Google Scholar
  5. Erlij, D., Smith, M.W. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.J. Physiol. (London) 228:221Google Scholar
  6. Farquhar, M.G., Palade, G.E. 1964. Functional organization of amphibian skin.Proc. Nat. Acad. Sci. USA 51:569Google Scholar
  7. Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137Google Scholar
  8. Fuhrman, F.A., Ussing, H.H. 1951. A characteristic response of the isolated frog skin potential to neurohypophysial principles and its relation to the transport of sodium and water.J. Cell. Comp. Physiol. 38:109Google Scholar
  9. Funder, J., Ussing, H.H., Wieth, J.O. 1967. The effects of CO2 and hydrogen ions on active Na transport in the isolated frog skin.Acta Physiol. Scand. 71:65Google Scholar
  10. Hansen, H.H., Zerahn, K. 1964. Concentration of lithium, sodium and potassium in epithelial cells of the isolated frog skin during active transport of lithium.Acta Physiol. Scand 60:189Google Scholar
  11. Hendil, K.B., Hoffmann, E.K. 1974. Cell volume regulation in Ehrlich ascites tumor cells.J. Cell. Physiol. 84:115Google Scholar
  12. Jørgensen, C.B., Levi, H., Ussing, H.H. 1946. On the influence of the neurohypophyseal principles on the sodium metabolism in the axolotl (Ambystoma mexicanum).Acta Physiol. Scand. 12:350Google Scholar
  13. Kirschner, L.B. 1955. On the mechanism of active sodium transport across the frog skin.J. Cell. Comp. Physiol. 45:61Google Scholar
  14. Koefoed-Johnsen, V., Levi, H., Ussing, H.H. 1952. The mode of passage of chloride ions through the isolated frog skin.Acta Physiol. Scand. 25:150Google Scholar
  15. Koefoed-Johnsen, V., Lyon, I., Ussing, H.H. 1973. Effect of Cu ion on permeability properties of isolated frog skin (Rana temporaria). Abs. XIV Scand. Congr. Physiol. Pharmacol., Bergen 1973.Acta Physiol. Scand. suppl. 396:102Google Scholar
  16. Koefoed-Johnsen, V., Ussing, H.H. 1949. The influence of the corticotropic hormone from ox on the active salt uptake in the axolotl.Acta Physiol. Scand. 17:38Google Scholar
  17. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298Google Scholar
  18. Koefoed-Johnsen, V., Ussing, H.H. 1974. Transport pathways in frog skin and their modification by copper ions.In: Secretory Mechanisms of Exocrine Glands. Alfred Benzon Symposium VII. N.A. Thorn and O.H. Petersen, editors. p. 411. Munksgaard, CopenhagenGoogle Scholar
  19. Kristensen, P. 1972. Chloride transport across isolated frog skin.Acta Physiol. Scand. 84:338Google Scholar
  20. Kristensen, P., Schousboe, A. 1969. The influence of anaerobic conditions on sodium transport and adenine nucleotide levels in the isolated skin of the frogRana temporaria.Biochim. Biophys. Acta 173:206Google Scholar
  21. Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergeb. Physiol. 56:215Google Scholar
  22. Loewenstein, W.R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441Google Scholar
  23. MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand 53:348Google Scholar
  24. Mandel, L.J., Curran, P.F. 1972. Chloride flux via a shunt pathway in frog skin: Apparent exchange diffusion.Biochim. Biophys. Acta. 282:258Google Scholar
  25. Morel, F., Leblanc, G. 1973. Kinetics of sodium and lithium accumulation in isolated frog skin epithelium.In: Transport Mechanisms in Epithelia. Alfred Benzon Symposium V. H.H. Ussing and N.A. Thorn, editors. p. 73. Munksgaard, CopenhagenGoogle Scholar
  26. Roti Roti, L.W., Rothstein, A. 1973. Adaption of mouse leukemic cells (L5178Y) to anisomotic media.Exp. Cell Res. 79:295Google Scholar
  27. Ussing, H.H. 1949. The active ion transport through the isolated frog skin in the light of tracer studies.Acta Physiol. Scand. 17:1Google Scholar
  28. Ussing, H.H. 1965. Relationship between osmotic reactions and active sodium transport in the frog skin epithelium.Acta Physiol. Scand. 63:141Google Scholar
  29. Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484Google Scholar
  30. Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110Google Scholar
  31. Voûte, C.L., Hänni, S. 1973. Relation between structure and function in frog skin.In: Transport Mechanisms in Epithelia. Alfred Benzon Symposium V. H.H. Ussing and N.A. Thorn, editors. p. 86 Munksgaard, CopenhagenGoogle Scholar
  32. Voûte, C.L., Møllgaard, K., Ussing, H.H. 1975. Quantitative relationship between active sodium transport, expansion of endoplasmic reticulum and specialized vacuoles (“scalloped sacs”) in the outermost living cell layer of the frog skin epithelium (Rana temporaria).J. Membrane Biol. 21:273Google Scholar
  33. Voûte, C.L., Ussing, H.H. 1968. Some morphological aspects of active sodium transport. The epithelium of the frog skin.J. Cell Biol. 36:625Google Scholar
  34. Zadunaisky, J.A., Candia, O.A., Chiarandini, J. 1963. Origin of the short-circuit current in the isolated skin of the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 47:392Google Scholar

Copyright information

© Springer-Verlag New York Inc 1978

Authors and Affiliations

  • Hans H. Ussing
    • 1
  1. 1.Institute of Biological Chemistry AUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations