Skip to main content
Log in

Gibberellins in apical shoot meristems of flowering and vegetative sugarcane

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Gibberellins A1, A3, iso-A3, A4, A19, A20, and A36 were identified by gas chromatography-selected ion monitoring in apices of sugarcane (Saccharum spp. hybrids). Flowering apices (i.e., 2–4 cm panicle) contained 8–9 times more (estimated by bioassay) endogenous gibberellins A and iso-GA3 (ratio of 1:6:8, respectively; in total 51 ng g−1 fresh weight) than vegetative apices (6.4 ng g−1 fresh weight). Vegetative apices contained small but significant levels of GA19, which could not be detected in flowering apices; vegetative apices also contained approximately four times more of a GA36-like substance than flowering apices. Since the two apex types developed under the same photoperiod, the increased levels of GA and iso-GA3 and the reduced levels of GA19 and GA36-like substances are correlated with the flowering state rather than with photoperiod or photoperiod changes per se. Since there were relatively high levels of C19 GAs along with low levels of C20 GAs in flowering apices, and since the converse is true in vegetative apices, metabolism of C20 to C19 GAs may be enhanced in flowering apices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GA:

gibberellin(s)

MS:

mass spectrometry

fw:

fresh weight

GC:

gas liquid chromatography

GC/MS:

combined gas chromatography-mass spectrometry

MeOH:

methanol

MeTMSi:

methyl ester-trimethylsilyl ether

PVP:

polyvinylpyrrolidone

SIM:

selected ion monitoring

Rt:

retention time

SiO2 :

silica gel

References

  • Crozier A, Kuo CC, Durley RC, Pharis RP (1970) The biological activities of 26 gibberellins in nine plant bioassays. Can J Bot 48:867–877

    Google Scholar 

  • Durley RC, Crozier A, Pharis RP, McLaughlin GE (1972) Chromatography of 33 gibberellins on a gradient eluted silica gel partition column. Phytochemistry 11:3029–3033

    Google Scholar 

  • Gaskin P, Gilmour SJ, Lenton JR, MacMillan J, Sponsel VM (1983) Endogenous gibberellins and kauranoids identified from developing grain and germinating seedlings of barley. J Plant Growth Regul 2:229–242

    Google Scholar 

  • Gianfagna T, Zeevaart JAD, Lusk WJ (1983) Effect of photoperiod on the metabolism of deuterium-labelled gibberellin A53 in spinach. Plant Physiol 72:86–89

    Google Scholar 

  • Glenn JL, Kuo CC, Durley RC, Pharis RP (1972) Use of insoluble polyvinylpyrrolidone for purification of plant extracts and chromatography of plant hormones. Phytochemistry 11:345–351

    Google Scholar 

  • Graebe JE, Hedden P, Gaskin P, MacMillan J (1974) Biosynthesis of gibberellins A12, A15, A24, A36 and A37 by a cell-free system fromCucurbita maxima. Phytochemistry 13:1433–1440

    Google Scholar 

  • Hedden P, Phinney BO, Heupel R, Fujii D, Cohen H, Gaskin P, MacMillan J, Graebe JE (1982) Hormones of young tassells ofZea mays. Phytochemistry 21:391–393

    Google Scholar 

  • Hoad GV, Pharis RP, Railton ID, Durley RC (1976) Activity of the aldehyde and alcohol of gibberellin A12 and A14, two derivatives of gibberellin A15 and four decomposition products of gibberellin A3 in 13 plant bioassays. Planta 130:113–120

    Google Scholar 

  • Jones MG, Metzger JD, Zeevaart JAD (1980) Fractionation of gibberellins in plant extracts by reverse phase high performance liquid chromatography. Plant Physiol 65:218–221

    Google Scholar 

  • Kaufman PB, Ghosheh NS, Nakosteen L, Pharis RP, Durley RC, Morf W (1976) Analysis of native gibberellins in the internode, nodes, leaves and inflorescence of developingAvena plants. Plant Physiol 58:131–134

    Google Scholar 

  • Koshioka M, Harada J, Takeno K, Noma M, Sassa T, Ogiyama K, Taylor JS, Rood SB, Legge RL, Pharis RP (1983) Reversed-phase C18 high-performance liquid chromatography of acidic and conjugated gibberellins. J Chromatogr 256:101–115

    Google Scholar 

  • Koshioka M, Pharis RP, Moore PH (1984) Identification of gibberellins A4 and A36 in sugarcane apices by gas chromatography-selected ion monitoring. Agric Biol Chem 48:2395–2396

    Google Scholar 

  • Kuhnle JA, Moore PH, Haddon WF, Fitch MM (1983) Identification of gibberellins from sugarcane plants. J Plant Growth Regul 2:59–71

    Google Scholar 

  • Kurogochi S, Murofushi N, Ota Y, Takahashi N (1979) Identification of gibberellins in the rice plant and quantitative changes of gibberellin A19 throughout its life cycle. Planta 146:185–191

    Google Scholar 

  • Metzger JD (1983) Role of endogenous plant growth regulators in seed dormancy ofAvena fatua. II. gibberellins. Plant Physiol 73:791–795

    Google Scholar 

  • Murakami Y (1968) A new rice seedling bioassay for gibberellins, “microdrop method,” and its use for testing of rice and morning glory. Bot Mag (Tokyo) 81:33–43

    Google Scholar 

  • Pryce RJ (1973) Decomposition of aqueous solutions of gibberellic acid upon autoclaving. Phytochemistry 12:507–514

    Google Scholar 

  • Rood SB, Pharis RP, Koshioka M, Major DJ (1983) Gibberellins and heterosis in maize. I. Endogenous gibberellin-like substances. Plant Physiol 71:639–644

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, P.H., Pharis, R.P. & Koshioka, M. Gibberellins in apical shoot meristems of flowering and vegetative sugarcane. J Plant Growth Regul 5, 101–109 (1986). https://doi.org/10.1007/BF02025961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02025961

Keywords

Navigation