Zeitschrift für Ernährungswissenschaft

, Volume 18, Issue 2, pp 94–103 | Cite as

Regional brain studies on indoles and tyrosine in Mongolian gerbils during nutrition with artificial mixtures high in branched chain amino acids compared to a protein rich diet

  • P. Riederer
Originalarbeiten
  • 22 Downloads

Summary

Up till now evidence is lacking regarding the regional distribution of indoles, like tryptophan (TRP), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) as well as tyrosine (TYR) in the brains of Mongolian gerbils. Therefore using a microdissection technique and pooling regional brain samples, it can be shown that there is a regional distribution of 5-HT and 5-HIAA in the brain of Mongolian gerbils which is highest in the raphe + reticular formation system followed by the rest of the brainstem and lenticular nuclei. A longterm fast (22 hours) increases TRP and 5-HIAA but not 5-HT, indicating an increase in the turnover rate of 5-HT. Brain TYR and TRP are only slightly increased after a protein rich diet, whereas 5-HT and 5-HIAA are not changed. Artificial nutrition with amino acid mixtures highly concentrated with branched chain amino acids lead to a decrease of TYR and TRP as well as 5-HT and 5-HIAA. Competing amino acid as well as inhibition of 5-HT synthesis is suggested to be responsible for these effects.

Mongolian gerbils show higher brain values of TRP and lower ones of TYR in comparison with other species of mice.

In peripheral organs, specially in the liver and lung, similar effects are observable. However, the changes are only mild in comparison to that observed in the brain. Moreover, TYR and TRP are significantly increased in peripheral organs after a protein rich diet.

Zusammenfassung

Die regionale Verteilung von Indolen wie Tryptophan (TRP), Serotonin (5-HT) und 5-Hydroxyindol-3-essigsäure (5-HIAA) sowie von Tyrosin (TYR) wurde in Gehirnen von mongolischen Springmäusen untersucht. Mit Hilfe einer Mikrosektionstechnik sowie durch „Poolen“ von Gewebeproben war es möglich, regionale Unterschiede speziell für 5-HT und 5-HIAA festzustellen, wobei die höchsten Werte in Raphe + Formatio reticularis, restlichem Hirnstamm und Linsenkern meßbar waren. Ein 22stündiger Nahrungsentzug resultierte in einem Anstieg von TRP und 5-HIAA, nicht aber von 5-HT, was auf eine gesteigerte Umsatzrate von 5-HT hindeutet.

Die Verabreichung einer proteinreichen Diät führt nur zu einem leichten Anstieg von TYR und TRP, 5-HT und 5-HIAA zeigen keine signifikanten Unterschiede. Ernährung mit künstlichen Aminosäuregemischen, welche hohe Konzentrationen von verzweigtkettigen Aminosäuren enthielten, ergab einen signifikanten Abfall von TYR und TRP, 5-HT und 5-HIAA. Die kompetitive Wechselwirkung der aromatischen und verzweigtkettigen Aminosäuren um die Transport- und Aufnahmemechanismen in das Gehirn sowie die Hemmung der 5-Hydroxytryptophansynthese durch verzweigtkettige Aminosäuren dürften für die beobachteten Effekte verantwortlich sein.

Mongolische Springmäuse weisen im Gehirn, verglichen mit anderen Mäusearten, höhere Konzentrationen an TRP und geringere an TYR auf.

In peripheren Organen, speziell in Leber und Lunge, wurden ähnliche Ergebnisse erzielt. Die Unterschiede sind aber im Vergleich zum Gehirn geringer ausgeprägt. Proteinreiche Kost führt im Gegensatz zum Gehirn zu einem stärkeren Anstieg von TYR und TRP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashcroft, G. W., F. D. Sharman, Drug induced changes in the concentration of 5-OR indolyl compounds in the cerebrospinal fluid and caudate nucleus. Brit. J. Pharmacol.19, 153–160 (1962).Google Scholar
  2. 2.
    Birkmayer, W., W. Danielczyk, E. Neumayer, P. Riederer, Nucleus ruber and L-Dopa psychosis: biochemical post mortem findings. J. Neural Transm.35, 93–116 (1974).CrossRefGoogle Scholar
  3. 3.
    Carlsson, A., M. Lindquist, Effects of precursor loads and deficiencies on transmitter synthesis in the rat. Abstract 11. CINP Congress, pp. 398, July 9–14, Vienna 1978.Google Scholar
  4. 4.
    Curzon, G., M. H. Joseph, P. J. Knott, Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J. Neurochem.19, 1967–1974 (1972).CrossRefGoogle Scholar
  5. 5.
    Denckla, W. D., H. K. Dewey, The determination of tryptophan in plasma, liver and urine, J. Lab. Clin. Med.69, 160–169 (1967).Google Scholar
  6. 6.
    Fischer, J. E., N. Yoshimur, A. Aguirre, J. H. James, M. G. Cummings, R. M. Abel, F. Deindoerfer, Plasma amino acids in patients with hepatic encephalopathy: effects of amino acid infusions. Amer. J. Surg.127, 40–47 (1974).CrossRefGoogle Scholar
  7. 7.
    Gessa, G. L., G. Biggio, F. Fadda, G. U. Corsini, A. Tagliamonte, Effect of the administration of tryptophan — free amino acid mixtures on serum tryptophan, brain tryptophan and serotonin metabolism. J. Neurochem.22, 869–870 (1974).CrossRefGoogle Scholar
  8. 8.
    Hamon, M., S. Bourgoin, Y. Morot-Daudry, F. Henry, J. Glowinski, Role of active transport of tryptophan in the control of 5-hydroxytryptamine synthesis. Adv. Biochem. Psychopharmacol.11, 153–162 (1974).Google Scholar
  9. 9.
    Jellinger, K., I. Klatzo, P. Riederer, Neurotransmitters in cerebral coma and stroke. J. Neural Transm. Suppl., in press 1978.Google Scholar
  10. 10.
    Kiely, M., T. L. Sourkes, Transport of L-tryptophan into slices of rat cerebral cortex. J. Neurochem.19, 2863–2872 (1972).CrossRefGoogle Scholar
  11. 11.
    Kleinberger, G., P. Ferenci, A. Gassner, H. Lochs, H. Pall, M. Pichler, Behandlung des Coma Hepaticum durch vollständige parenterale Ernährung und L-Valin. Schweiz. Med. Wschr.107, (45) 1639 (1977).Google Scholar
  12. 12.
    Knott, P. J., C. A. Marsden, G. Curzon, Comparative studies of brain 5-hydroxytryptamine and tryptamine, in: Serotonin — New Vistas, Adv. in Biochem. Psychopharmacology, Vol.11, pp. 109–114. Eds.:E. Costa, G. L. Gessa, M. Sandler (New York 1974).Google Scholar
  13. 13.
    Levine, S., H. Payan, Effect of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus). Exp. Neurol.16, 255–262 (1966).CrossRefGoogle Scholar
  14. 14.
    McKean, C. M., D. E. Boggs, N. A. Peterson, The influence of high phenylalanine and tyrosine on the concentration of essential amino acids in brain. J. Neurochem.15, 235–241 (1968).CrossRefGoogle Scholar
  15. 15.
    Moskowitz, M. A., R. J. Wurtman, Acute Stroke and Brain Monoamines, in: Cerebrovascular diseases, Ed.:P. Scheinberg, pp. 153–165 (New York 1976).Google Scholar
  16. 16.
    Mrsulja, B. B., B. J. Mrsulja, M. Spatz, I. Klatzo, Action of cerebral ischemia on decreased levels of 3-methoxy-4-hydroxyphenylethylglycol sulfate, homovanillic acid and 5-hydroxyindoleacetic acid produced by pargyline. Brain Research98, 388–393 (1975).CrossRefGoogle Scholar
  17. 17.
    Mrsulja, B. B., B. J. Mrsulja, M. Spatz, U. Ito, J. T. Walker, I. Klatzo, Experimental Cerebral Ischemia in Mongolian Gerbils. IV. Behaviour of biogenic amines. Acta Neuropath. (Berl.)36, 1–8 (1976).CrossRefGoogle Scholar
  18. 18.
    Munro, H. N., Control of plasma amino acid concentrations. In: Aromatic Amino Acids in the Brain; Ciba Foundation Symposium22, 5–18 (Amsterdam/Holl., New York 1974).Google Scholar
  19. 19.
    Perez-Cruet, J., A. Tagliamonte, P. Tagliamonte, G. L. Gessa, Changes in brain serotonin metabolism associated with fasting and satiation in rats. Life Sciences11, (2), 31–39 (1972).CrossRefGoogle Scholar
  20. 20.
    Ramanamurthy, P. S. V., S. G. Srikantia, Effects of leucine on brain serotonin. J. Neurochem.17, 27–37 (1970).CrossRefGoogle Scholar
  21. 21.
    Riederer, P., K. Jellinger, W. D. Rausch, P. Kothbauer, Brain monoamines in hepatic encephalopathy and other types of metabolic coma. J. Neural Transm. Suppl., in press 1978.Google Scholar
  22. 22.
    Riederer, P., G. Kleinberger, W. D. Rausch, K. Jellinger, S. Wuketich, Stoffwechselwirksame Faktoren in der Pathogenese der Bewußtseinsstörung und des Koma. Klin. Anästhesiologie und Intensivtherapie, in press 1978.Google Scholar
  23. 23.
    Tigges, J., T. R. Shanta, A stereotaxic brain atlas of the tree shrew (Tupaia glis) (Baltimore 1969).Google Scholar
  24. 24.
    Waalkes, T. P., S. Udenfried, A fluorometric method for the estimation of tyrosine in plasma and tissue. J. Lab. Clin. Med.50, 733 (1957).Google Scholar
  25. 25.
    Weiser, M., P. Riederer, G. Kleinberger, Human cerebral free amino acids in hepatic coma. J. Neutral Transm. Suppl. in press, proc. 12th CINP Congress Vienna, July 9–14, 1978.Google Scholar
  26. 26.
    Wurtman, R. J., J. D. Fernstrom, L-Tryptophan, L-Tyrosine and the Control of Brain Monoamine Biosynthesis. In: Perspectives in Neuropharmacology, pp. 143–193 Eds.S. H. Snyder (New York-London 1972).Google Scholar
  27. 27.
    Yuviler, A., E. Geller, Serotonin depletion by dietary leucine. Nature208, 83–84 (1965).CrossRefGoogle Scholar
  28. 28.
    Zeman, W., J. R. M. Innes, Craigie's Neuroanatomy of the Rat (New York-London 1963).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1979

Authors and Affiliations

  • P. Riederer
    • 1
  1. 1.L. Boltzmann Institute of Clinical NeurobiologyLainz HospitalViennaAustria

Personalised recommendations