Skip to main content
Log in

Combinatorial optimization by stochastic automata

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The significance of combinatorial optimization for many important applications is well understood. The simulated annealing algorithm (which we will denote from here on as SA) has generated great interest and attention in the scientific community. Its authors derived it from analogies to the physical domain [15,10], and a myriad of publications followed (see references to the book on simulated annealing in [11]). The prevailing opinion expressed in these publications was that the SA algorithm represents a new, hitherto unknown class of algorithms and provides a breakthrough in the solution of NP-hard optimization problems. As might be expected, roots of the SA do exist, and one of the purposes of this paper is to trace these roots. We prove that SA, like many other randomized algorithms, belongs to the class of S-type GH-stochastic automata. We provide other representatives of this class together with algorithms from some other classes, and discuss the issue of convergence. Large computational experiemts were performed on a network of Apollo computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aarts and P. van Laarhoven, Statistical cooling: A general approach to combinatorial optimization problems, Phillips J. of Res. 40(1985)193–226.

    Google Scholar 

  2. S. Anily and A. Federgruen, Simulated annealing methods with general acceptance probabilities, J. Appl. Prob. 24(1987)657–677.

    Google Scholar 

  3. R. Bush and F. Mosteller,Stochastic Models for Learning (Wiley, New York, 1958).

    Google Scholar 

  4. P.J. Cameron, M. Deza and D. Frank, Intersection theorems in permutation groups, Combinatorica 8, 3(1988)249–260.

    Google Scholar 

  5. G. Cohen and M. Deza, Some metrical problems onS n , Ann. Discr. Math. 8(1980)211–219.

    Google Scholar 

  6. W. Feller,An Introduction to Probability Theory and Applications, Vol. 1 (Wiley, New York, 1950).

    Google Scholar 

  7. B. Gidas, Nonstationary Markov chains and convergence of the annealing algorithm, J. Statis. Phys. 39(1985)73–131.

    Article  Google Scholar 

  8. D.L. Isaacson and R.W. Madsen,Markov Chains Theory and Applications (Wiley, New York, 1976).

    Google Scholar 

  9. D. Johnson, C. Aragon, L. McGeoch and C. Schevon, Optimization by simulated annealing: Experimental evaluation (part 1), Preprint.

  10. S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 220(1983)671–680.

    Google Scholar 

  11. P.J.M. van Laarhoven and E.H.L. Aarts,Simulated Annealing: Theory and Applications (Reidel, Dordrecht, 1987).

    Google Scholar 

  12. S. Lakshmivarahan and M. Thathachar, Absolutely expedient learning algorithms for stochastic automata, IEEE Trans. on Systems, Man, and Cybernetics SMC-3(1973)281–286.

    Google Scholar 

  13. R. McLaren, A stochastic automation model for synthesis of learning systems, IEEE Trans. Syst. Sci. Cybern. SSC-2(1966)109–144.

    Google Scholar 

  14. G. McMurthy and K. Fu, A variable structure automation used as a multinodal search technique, IEEE Trans. Automat. Contr. AC-11(1966)379–387.

    Article  Google Scholar 

  15. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(1953)1087–1092.

    Article  Google Scholar 

  16. D. Mitra, F. Romeo and A. Sangiovanni-Vincentelli, Convergence and finite time behavior of simulated annealing, J. Adv. Appl. Prob. 18(1986)741–771.

    Google Scholar 

  17. S. Nahar, S. Sahni and E. Shragowitz, Experiments with simulated annealing,Proc. 22nd Des. Automation Conf., Las Vegas (1985) pp. 748–752.

  18. S. Nahar, S. Sahni and E. Shragowitz, Simulated annealing and combinatorial optimization,Proc. 23rd Des. Automation Conf., Las Vegas (1986) pp. 293–299.

  19. K. Narendra and M. Thathachar, Learning automata — A survey, IEEE Trans. on Systems, Man, and Cybernetics SMC-4(1974)323–334.

    Google Scholar 

  20. S. Reiter and G. Sherman, Discrete optimizing, J. Soc. Indust. Appl. Math. 13(1965)864–889.

    Article  Google Scholar 

  21. S. Reiter and D. Rice, Discrete optimizing solution procedures for linear and nonlinear integer programming problems, Manag. Sci. 11(1966)829–850.

    Article  Google Scholar 

  22. F. Romeo and A. Sangiovanni-Vincentelli, Probabilistic hill-climbing algorithms: Properties and applications, Report No. UCB/ERL M84/34, Electronics Research Laboratory, University of California (1984).

  23. I. Sergienko and M. Kaspschitzkaya,Models and Methods for Solving Combinatorial Problems on Computers (Naukova Dumka, Kiev, 1981).

    Google Scholar 

  24. I. Shapiro and K. Narendra, Use of stochastic automata for parameter self-optimization with multinodal performance criteria, IEEE Trans. Syst. Sci. Cybern. SSC-5, 4(1969)352–360.

    Article  Google Scholar 

  25. B. Trakhtenbrot and Y. Barzdin,Finite Automata, Behavior and Synthesis (North-Holland, Amsterdam, 1973).

    Google Scholar 

  26. M. Tsetlin, On the behavior of finite automata in random media, Automatika i Telemechanika 22, 10(1961)1345–1354.

    Google Scholar 

  27. M. Tsetlin,Automation Theory and Modeling of Biological Systems (Nauka, Moscow, 1969).

    Google Scholar 

  28. M. Tsetlin,Automation Theory and Modeling of Biological Systems (Academic Press, New York, 1973). English edition.

    Google Scholar 

  29. Y. Tzypkin and A. Poznyak, Learning automata, J. Cybern. Inf. Sci. ASC 1, 2–4(1977)128–160.

    Google Scholar 

  30. V. Varshavskii and I. Vorontsova, On the behavior of stochastic automata with a variable structure, Automatika i Telemechanika 24, 3(1963)353–360.

    Google Scholar 

  31. V. Varshavskii,Collective Behavior of Automata (Nauka, Moscow, 1973).

    Google Scholar 

  32. I. Vorontsova, Algorithms for changing stochastic automata transition probabilities, Problemi Peredachi Informatzii 1, 3(1965)122–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shragowitz, E., Lin, RB. Combinatorial optimization by stochastic automata. Ann Oper Res 22, 293–324 (1990). https://doi.org/10.1007/BF02023058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02023058

Keywords

Navigation