A one axiom set theory based on higher order predicate calculus

  • M. W. Bunder
Article

Keywords

Mathematical Logic Predicate Calculus High Order Predicate Order Predicate Calculus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bunder, M.W.: Propositional and predicate calculuses based on combinatory logic. Notre Dame Journal of Formal LogicXV, 25–34 (1974).Google Scholar
  2. [2]
    Bunder, M.W.: Various systems of set theory based on combinatory logic. Notre Dame Journal of Formal LogicXV, 192–206 (1974).Google Scholar
  3. [3]
    Bunder, M.W.: Predicate calculus of arbitrarily high finite order. Arch. math. Logik23, 1–10 (1983).Google Scholar
  4. [4]
    Bunder, M.W.: Consistency notions in illative combinatory logic. J. Symb. Logic42, 527–529 (1977).Google Scholar
  5. [5]
    Bunder, M.W.: On the equivalence of systems of rules and systems of axioms in illative combinatory logic. Notre Dame Journal of Formal LogicXX, 603–608 (1979).Google Scholar
  6. [6]
    Vopênka, P., Hájek, P.: The theory of semi-sets. Amsterdam: North-Holland 1972.Google Scholar

Copyright information

© Verlag W. Kohlhammer 1983

Authors and Affiliations

  • M. W. Bunder
    • 1
  1. 1.Department of MathematicsThe University of WollongongWollongongAustralia

Personalised recommendations