J. Abadie, Méthode du gradient reduit generalisé: Le code GRGA, Note HI 1756/00, Electricite de France, Paris (1975).
Google Scholar
R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D. Powell, The watchdog technique for forcing convergence in algorithms for constrained minimization, Mathematical Programming Studies 16(1982)1.
Google Scholar
R.L. Crane, B.S. Garbow, K.E. Hillstrom and M. Minkoff, LCLSQ: An implementation of an algorithm for linearly constrained linear least squares problems, Report ANL-80-116, Argonne National Laboratory, Argonne, Illinois (1980).
Google Scholar
R.L. Crane, K.E. Hillstrom and M. Minkoff, Solution of the general nonlinear programming problem with subroutine VMCON, Report ANL-80-64, Argonne National Laboratory, Argonne, Illinois (1980).
Google Scholar
A.V. Fiacco and G.P. McCormick,Nonlinear Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968).
Google Scholar
R. Fletcher, A FORTRAN program for general quadratic programming, Report No. R6370, AERE, Harwell, Berkshire (1970).
Google Scholar
R. Fletcher, An ideal penalty function for constrained optimization, in:Nonlinear Programming 2, ed. O.L. Mangasarian, R.R. Meyer and S.M. Robinson (Academic Press, New York, 1975).
Google Scholar
P.E. Gill, W. Murray and M.A. Saunders, Methods for computing and modifying the LDV factors of a matrix, Mathematics of Computation 29(1975)1051.
Google Scholar
P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, Two steplength algorithms for numerical optimization, Report SOL 79-25, Dept. of Operations Research, Stanford University, Stanford (1979).
Google Scholar
P.E. Gill, W. Murray, M.A. Saunders and M. Wright, User's guide for SOL/QPSOL: A FORTRAN package for quadratic programming, Report SOL 82-7, Dept. of Operations Research, Stanford University (1982).
P.E. Gill, W. Murray, M.A. Saunders and M. Wright, User's guide for SOL/NPSOL: A FORTRAN package for nonlinear programming, Report SOL 83-12, Department of Operations Research, Stanford University (1983).
S.-P. Han, Superlinearly convergent variable metric algorithms for general nonlinear programming problems, Mathematical Programming 11(1976)263.
Google Scholar
S.-P. Han, A globally convergent method for nonlinear programming, J. of Optimization Theory and Applications 22(1977)297.
Google Scholar
W. Hock and K. Schittkowski,Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187 (Springer-Verlag, Berlin — Heidelberg — New York, 1981).
Google Scholar
W. Hock and K. Schittkowski, A comparative performance evaluation of 27 nonlinear programming codes, Computing 30(1983)335.
Google Scholar
W. Kribbe, Documentation of the FORTRAN-subroutines for quadratic programming CONQUA and START, Report 8231/1, Econometric Institute, Erasmus University, Rotterdam (1982).
Google Scholar
L.S. Lasdon and A.D. Waren, Generalized reduced gradient software for linearly and nonlinearly constrained problems, in:Design and Implementation of Optimization Software, ed. H.J. Greenberg (Sijthoff and Noordhoff, Alphen aan den Rijn (1978).
C.L. Lawson and R.J. Hanson,Solving Least Squares Problems (Prentice Hall, Englewood, Cliffs, New Jersey, 1974).
Google Scholar
D.A. Pierre and M.J. Lowe,Mathematical Programming via Augmented Lagrangians (Addison-Wesley, Reading, Massachusetts, 1975).
Google Scholar
M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in:Numerical Analysis, ed..A. Watson,Lecture Notes in Mathematics, Vol. 630 (Springer-Verlag, Berlin — Heidelberg — New York, 1978).
Google Scholar
M.J.D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, in:Nonlinear Programming 3, ed. O.L. Mangasarian, R.R. Meyer and S.M. Robinson (Academic Press, New York — San Francisco — London, 1978).
Google Scholar
M.J.D. Powell, VMCWD: A FORTRAN subroutine for constrained optimization, Report DAMTP 1982/NA4, University of Cambridge, Cambridge (1982).
Google Scholar
M.J.D. Powell, ZQPCVX: A FORTRAN subroutine for convex quadratic programming, Report DAMTP 1983/NA17, University of Cambridge, Cambridge (1983).
Google Scholar
M.J.D. Powell, The performance of two subroutines for constrained optimization on some difficult test problems, Report DAMTP 1984/NA6, University of Cambridge, Cambridge (1984).
Google Scholar
D. Rufer, User's guide for NLP — A subroutine package to solve nonlinear optimization problems, Report No. 78-07, Fachgruppe für Automatik, ETH Zürich (1978).
Google Scholar
K. Schittkowski,Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 183 (Springer-Verlag, Berlin — Heidelberg — New York, 1980).
Google Scholar
K. Schittkowski, The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. Part 1: Convergence analysis, Numerische Mathematik 38(1981)83.
Google Scholar
K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function, Mathematische Operationsforschung und Statistik, Ser. Optimization 14(1983)197.
Google Scholar
K. Schittkowski, User's guide for the nonlinear programming code NLPQL, Report, Institut für Informatik, Universität Stuttgart, FRG (1984).
Google Scholar
K. Schittkowski, Test examples for nonlinear programming codes, Report, Institut für Informatik, Universität Stuttgart, FRG (1984).
Google Scholar
R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. Thesis, Graduate School of Business Administration, Harvard University, Boston (1963).
Google Scholar