Skip to main content
Log in

Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions

  • Combinatorial Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In the last years, decomposition techniques have seen an increasing application to the solution of problems from operations research and combinatorial optimization, in particular in network theory and graph theory. This paper gives a broad treatment of a particular aspect of this approach, viz. the design of algorithms to compute the decomposition possibilities for a large class of discrete structures. The decomposition considered is thesubstitution decomposition (also known as modular decomposition, disjunctive decomposition, X-join or ordinal sum). Under rather general assumptions on the type of structure considered, these (possibly exponentially many) decomposition possibilities can be appropriately represented in acomposition tree of polynomial size. The task of determining this tree is shown to be polynomially equivalent to the seemingly weaker task of determining the closed hull of a given set w.r.t. a closure operation associated with the substitution decomposition. Based on this reduction, we show that for arbitrary relations the composition tree can be constructed in polynomial time. For clutters and monotonic Boolean functions, this task of constructing the closed hull is shown to be Turing-reducible to the problem of determining the circuits of the independence system associated with the clutter or the prime implicants of the Boolean function. This leads to polynomial algorithms for special clutters or monotonic Boolean functions. However, these results seem not to be extendable to the general case, as we derive exponential lower bounds for oracle decomposition algorithms for arbitrary set systems and Boolean functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Ashenhurst, The decomposition of switching functions, in:Proc. Int. Symposium on the Theory of Switching, Part I (Harvard University Press, Cambridge, 1959).

    Google Scholar 

  2. R.E. Barlow and F. Proschan,Statistical Theory of Reliability and Life Testing (Holt, Rinehart and Winston, New York, 1975).

    Google Scholar 

  3. L.J. Billera, Clutter decomposition and monotonic Boolean functions, Ann. of the New York Academy of Sciences 175(1970)41.

    Google Scholar 

  4. L.J. Billera, On the composition and decomposition of clutters, J. Comb. Th. B 11(1971)234.

    Google Scholar 

  5. L.J. Billera and R.E. Bixby, Decomposition theory for a class of combinatorial optimization problems, in:Optimization Methods for Resource Allocation, Proc. Nato Conf. Elsinore (1971) (English University Press, London, 1974) p. 427.

    Google Scholar 

  6. Z.W. Birnbaum and J.D. Esary, Modules of coherent binary systems, SIAM J. Applied Math. 13(1965)444.

    Google Scholar 

  7. H. Buer and R.H. Möhring, A fast algorithm for the decomposition of graphs and posets, Math. Oper. Res. (1984) 170.

  8. R.W. Butterworth, A set theoretic treatment of coherent systems, SIAM J. Applied Math. 22(1972)590.

    Google Scholar 

  9. M. Chein, M. Habib and M.C. Maurer, Partitive hypergraphs, Discrete Math. 37(1981)35.

    Google Scholar 

  10. V. Chvatal, On certain polytopes associated with graphs, J. Comb. Th. (B) 18(1975)138.

    Google Scholar 

  11. D.D. Cowan, L.O. James and R.G. Stanton, Graph decomposition for undirected graphs, in:3rd South-Eastern Conf. Combinatorics, Graph Theory, and Computing, ed. F. Hoffman and R.B. Levow (Utilitas Math., Winnipeg, 1972) p. 281.

    Google Scholar 

  12. W.H. Cunningham, Decomposition of directed graphs, SIAM J. Algebraic and Discrete Methods 3(1982)214.

    Google Scholar 

  13. W.H. Cunningham and J. Edmonds, A combinatorial decomposition theory, Can. J. Math. 32(1980)734.

    Google Scholar 

  14. H.A. Curtis,A New Approach to the Design of Switching Circuits (Van Nostrand, Princeton, 1962).

    Google Scholar 

  15. M. Davio, J.P. Deschamps and A. Thayse,Discrete and Switching Functions (McGraw-Hill, New York, 1978).

    Google Scholar 

  16. J.P. Deschamps, Binary simple decomposition of discrete functions, Digital Processes 1(1975)123.

    Google Scholar 

  17. M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, San Francisco, 1979).

    Google Scholar 

  18. M. Golumbic,Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).

    Google Scholar 

  19. M. Habib and M.C. Maurer, On the X-join decomposition for undirected graphs, J. Appl. Discr. Math. 3(1979)198.

    Google Scholar 

  20. D. Hausmann and B. Korte, Lower bounds on the worst-case complexity of some oracle algorithms, Discrete Math. 24(1978)261.

    Google Scholar 

  21. R.L. Hemminger, The group of an X-join of graphs, J. Comb. Th. 5(1968)408.

    Google Scholar 

  22. T. Hiragushi, On the dimension of partially ordered sets, Sci. Rep., Kanazawa University 1(1951)77.

    Google Scholar 

  23. R. Kaerkes and B. Leipholz, Generalized network functions in flow networks, Methods of Oper. Res. 27(1977)225.

    Google Scholar 

  24. R. Kaerkes and F.J. Radermacher, Profiles, network functions and factorization, Methods of Oper. Res. 27(1977)66.

    Google Scholar 

  25. E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence constraints, Ann. Discrete Math. 2(1978)75.

    Google Scholar 

  26. R.H. Möhring, Untersuchungen zur Homomorphietheorie von Relationalsystemen, Thesis, Tech. Univ. of Aachen (1975).

  27. R.H. Möhring, Dekomposition diskreter Strukturen mit Anwendungen in der kombinatorischen Optimierung, Schriften zur Informatik und Angewandten Mathematik No. 95, Tech. Univ. of Aachen (1984).

  28. R.H. Möhring and F.J. Radermacher, Profiles and homomorphisms, Methods of Oper. Res. 27(1977)88.

    Google Scholar 

  29. R.H. Möhring and F.J. Radermacher, Substitution decomposition of discrete structures and connections to combinatorial optimization, Ann. Discrete Math. 19(1984)257.

    Google Scholar 

  30. C.L. Monma and J.B. Sidney, Sequencing with series-parallel precedence constraints, Math. of Oper Res. 4(1979)215.

    Google Scholar 

  31. J. Neggers, Counting finite posets, Acta Math. Acad. Scient. Hung., Tom. 31(1978)233.

    Google Scholar 

  32. J.L. Pfaltz, Graph structures, J. ACM 19(1972)411.

    Google Scholar 

  33. F.J. Radermacher and H.G. Spelde, Reduktion von Flussnetzplänen, Proc. in Oper. Res. 3(1974)177.

    Google Scholar 

  34. L.S. Shapley, Solutions of compound simple games, in:Advances in Game Theory, Ann. of Math. Study No. 52 (Princeton University Press, Princeton, 1964) p. 267.

    Google Scholar 

  35. L.S. Shapley, On Committees, in:New Methods of Thought and Procedure, ed. F. Zwicky and A.G. Wilson (Springer-Verlag, Berlin—New York, 1967) p. 246.

    Google Scholar 

  36. V.Y. Shen and A.C. McKellar, An algorithm for the disjunctive decomposition of switching functions, IEEE Trans. Computers C — 19(1970)239.

    Google Scholar 

  37. V.Y. Shen, A.C. McKellar and P. Weiner, A fast algorithm for the disjunctive decomposition of switching functions, IEEE Trans. Computers C — 20(1971)304.

    Google Scholar 

  38. A.W. Shogan, Modular decomposition and reliability computation in stochastic transportation networks having cutnodes, Networks 12(1982)255.

    Google Scholar 

  39. K. Strassner, Zur Strukturtheorie endlicher nichtdeterministischer Automaten I. Zum Verband der 1-Kongruenzen von endlichen Relationalsystemen, Elektronische Informationsverarbeitung und Kybernetik 17(1981)113.

    Google Scholar 

  40. A. Thayse, A fast algorithm for the proper decomposition of Boolean functions, Philips Res. Rep. 27(1972)140.

    Google Scholar 

  41. W. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standard 69B(1965)1.

    Google Scholar 

  42. D.J.A. Welsh,Matroid Theory (Academic Press, London, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möhring, R.H. Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions. Ann Oper Res 4, 195–225 (1985). https://doi.org/10.1007/BF02022041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02022041

Keywords and phrases

Navigation