Cofinalities of complete boolean algebras

  • Sabine Koppelberg


Mathematical Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Devlin, K.: Aspects of constructibility. Lecture Notes in Mathematics354. Berlin, Heidelberg, New York: Springer 1973.Google Scholar
  2. [2]
    Devlin, K. J., Johnsbråten, H.: The Souslin problem. Lecture Notes in Mathematics405. Berlin, Heidelberg, New York: Springer 1974.Google Scholar
  3. [3]
    Efimov, B., Engelking, R.: Remarks on dyadic spaces. II. Coll. Math.13, 181–197 (1965).Google Scholar
  4. [4]
    Engelking, R., Karlowicz, M.: Some theorems of set theory and their topological consequences. Fund. Math.57, 275–285 (1965)Google Scholar
  5. [5]
    Erdös, P., Tarski, A.: On families of mutually exclusive sets. Ann. of Math.44, 315–329 (1943).Google Scholar
  6. [6]
    Jech, Th.: Simple complete Boolean algebras. Israel J. Math.18, 1–10 (1974).Google Scholar
  7. [7]
    Jensen, R.B.: Definable sets of minimal degree. In: Y. Bar-Hillel (ed.): Mathematical logic and foundations of set theory, pp. 122–128. Amsterdam, London: North-Holland 1970.Google Scholar
  8. [8]
    Koppelberg, S.: Boolean algebras as unions of chains of subalgebras. Algebra Universalis7, 195–203 (1977).Google Scholar
  9. [9]
    McKenzie, R., Monk, J.D.: On automorphism groups of Boolean algebras. Colloquia mathematica societatis Janos Bolyai, 10; Infinite and Finite Sets, pp. 951–988 (1975).Google Scholar
  10. [10]
    Sikorski, R.: Boolean algebras, 2nd ed. Berlin, Göttingen, Heidelberg, New York: Springer 1964.Google Scholar
  11. [11]
    Vladimirov, D.A.: Boolesche Algebren. Berlin: Akademie-Verlag 1972.Google Scholar

Copyright information

© Verlag W. Kohlhammer 1980

Authors and Affiliations

  • Sabine Koppelberg
    • 1
  1. 1.II. Math. InstitutBerlin 33

Personalised recommendations