Comparative prime-number theory. II

Comparison of the progressions ≡1 modk and ≡l modk,l≢1 modk
  • S. Knapowski
  • P. Turán
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. E. Ingham A note on the distribution of primes,Acta Arith.,1 (2) (1936), pp. 201–211.Google Scholar
  2. [1]
    S. Knapowski On sign-changes in the remainder-term in the prime-number formula,Journ. Lond. Math. Soc., (1961), pp. 451–460.Google Scholar
  3. [1]
    J. E. Littlewood Sur la distribution des nombres premiers,Comptes Rendus Paris, (158) (1914), pp. 1869–1872. For a detailed exposition seeG. H. Hardy andJ. E. Littlewood Contributions to the theory of the Riemann zeta-functions and the theory of the distribution of primes,Acta Math.,41 (1918), pp. 119–196.Google Scholar
  4. [1]
    K. Prachar Primzahlverteilung (Springer Verl. 1957).Google Scholar
  5. [1]
    C. L. Siegel Über die Classenzahl quadratischer Körper,Acta Arith.,1 (1936), pp. 83–86.Google Scholar
  6. [1]
    S. Skewes On the difference π(x)-Lix, Proc. Lond. Math. Soc., (5) (1955), pp. 48–69.Google Scholar
  7. [1]
    P. Turán On some further one-sided theorems of new type in the theory of diophantine approximations,Acta Math. Acad. Sci. Hung.,12 (1961), pp. 455–468.Google Scholar
  8. [2]
    P. Turán Eine neue Methode in der Analysis und deren Anwendungen (Akad. Kiadó 1953). A completely rewritten and enlarged English edition, which differs quite essentially from the Chinese edition in 1956, will appear in the Interscience Tracts series.Google Scholar

Copyright information

© Akadémiai Kiadó 1962

Authors and Affiliations

  • S. Knapowski
    • 1
  • P. Turán
    • 2
  1. 1.Mathematical Institute of the University Adam MiczkiewiczPoznań
  2. 2.Mathematical InstituteEötvös Loránd UniversityBudapest

Personalised recommendations