Advertisement

Comparative prime-number theory. I

Introduction
  • S. Knapowski
  • P. Turán
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Chebyshev [1] Lettre de M. le professeur Tchébychev a M. Fuss, sur un nouveau théoreme rélatif aux nombres premiers contenus dans la formes 4n+1 et 4n+3,Bull. de la Classe phys.-math. de l'Acad. Imp. des Sciences St. Petersburg,11 (1853), p. 208.Google Scholar
  2. G. H. Hardy andJ. E. Littlewood [1] Contributions to the theory of Riemann zeta-function and the theory of the distribution of primes,Acta Math.,41 (1918), pp. 119–196.Google Scholar
  3. A. E. Ingham [1] A note on the distribution of primes,Acta Arith.,1 (2) (1936), pp. 201–211.Google Scholar
  4. S. Knapowski [1] On prime numbers in an arithmetical progression,Acta Arith. IV,1 (1958), pp. 57–70.Google Scholar
  5. S. Knapowski [2] On sign-changes in the remainder-term in the prime-number formula;Journ. Lond. Math. Soc. (1961), pp. 451–460.Google Scholar
  6. E. Landau [1] Über einige ältere Vermutungen und Behauptungen in der Primzahltheorie,Math. Zeitschr.,1 (1918), pp. 1–24.CrossRefGoogle Scholar
  7. — [2] Über einige ältere Vermutungen etc. Zweite Abhandlung, ibid, pp. 213–219.CrossRefGoogle Scholar
  8. — [3] Über einen Satz von Tschebyschef,Math. Ann. LXI,1 (1905), pp. 527–550.Google Scholar
  9. E. Phragmén [1] Sur la logarithme intégral et la fonctionf(x) de Riemann,Öfversigt af Kong. Vetensk.-Akad. Förhandlingar. Stockholm,48 pp. 599–616.Google Scholar
  10. G. Pólya [1] Über das Vorzeichen des Restgliedes im Primzahlsatz,Gött. Nachr., (1930), pp. 19–27.Google Scholar
  11. J. Barkley-Rosser [1] Real roots of real DirichletL-series,Jour. of Res. of the Nat. Bureau of Standards,45 (1950), pp. 505–514.Google Scholar
  12. D. Shanks [1] Quadratic residues and the distribution of primes,Math. Tables and other aids to computation,13 (1959), pp. 272–284.Google Scholar
  13. S. Skewes [1] On the difference π(x)−Lix, Proc. of Lond. Math. Soc.,5 (17) (1955), pp. 48–70.Google Scholar
  14. P. Turán [1]Eine neue Methode in der Analysis und deren Anwendungen (Akad. Kiadó, 1953). A completely rewritten and enlarged English edition, which differs quite essentially even from the Chinese edition in 1956, will appear in the Interscience Tracts series.Google Scholar
  15. — [2] On an improvement of some new one-sided theorems of the theory of diophantine approximations,Acta Math. Acad. Sci. Hung.,11 (1960), pp. 299–316.CrossRefGoogle Scholar
  16. — [3] On some further one-sided theorems of new type in the theory of diophantine approximation,Acta Math. Acad. Sci. Hung.,12 (1961), pp. 455–468.Google Scholar

Copyright information

© Akadémiai Kiadó 1962

Authors and Affiliations

  • S. Knapowski
    • 1
  • P. Turán
    • 2
  1. 1.Mathematical Institute, of the UniversityAdam MiczkiewiczPoznań
  2. 2.Mathematical InstituteEötvös Loránd UniversityBudapest

Personalised recommendations