Analysis Mathematica

, Volume 14, Issue 2, pp 175–184 | Cite as

On Riesz means with respect to a cylindric distance function

  • Hajo Luers
Article

Keywords

Distance Function Cylindric Distance 

О средних Рисса по цил индрической функции расстояния

Abstract

Рассматривается обо бщенный мультиплика тор суммирования по Рисс у вида (1−ϱ) + λ , гдеϱ — функция расст ояния наR n =R j ×R k , определенная соотно шениемϱ(ξ)=max{¦ξ 1¦, ¦ξ 1¦},ξ=(ξ 1,ξ 2),ξ 1R J ,ξ 2R k ,j,k≧1,n=j+k. В случаеn=3 доказанно, чт о (1−ϱ) + λ ∈[L 1(R n )]1, еслиλ>1/2; если жеj≳=4, то ф ункция (1−ϱ) + λ ни для какогоλR не есть мультипли катор наL p (R n ). если\(\left| {\frac{1}{p} - \frac{1}{{2}}} \right| \geqq \frac{{3}}{{2(n - 1)}}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abramovitz andI. A. Stegun,Handbook of Mathematical Functions. Dover Publication, New York 1965.Google Scholar
  2. [2]
    H.Dappa,Quasiradiale Fouriermultiplikatoren. Dissertation, TH Darmstadt 1982.Google Scholar
  3. [3]
    H. Dappa andW. Trebels, OnL 1-Criteria for Quasi-Radial Fourier Multipliers with Applications to some Anisotropic Function Spaces.Analysis Math.,9 (1983), 275–289.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    A.Erdélyi, et al.,Tables of Integral Transforms, Vol. 1, McGraw-Hill, 1954.Google Scholar
  5. [5]
    M. Jodeit, A Note on Fourier Multipliers.Proc. Amer. Math. Soc.,27 (1971), 423–424.MATHMathSciNetGoogle Scholar
  6. [6]
    W. Littman, Multipliers inL p and interpolation.Bull. Amer. Math. Soc.,71 (1965), 764–766.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    H.Luers,Quasiradiale Fouriermultiplikatoren mit Betragsfunktionen, bei denen Hauptkrümmungen der Einheitssphäre verschwinden. Dissertation, TH Darmstadt 1985.Google Scholar
  8. [8]
    J. Peetre, Application de la théorie des espaces d'interpolation dans l'analyse harmonique.Ricerche Mat.,15 (1966), 3–36.MATHMathSciNetGoogle Scholar
  9. [9]
    A. N. Podkorytov, Summation of multiple Fourier series over polyhedra.Vestnik Leningrad Univ. Math.,13 (1981), 69–77.MATHGoogle Scholar
  10. [10]
    E. M. Stein, On certain exponential sums arising in multiple Fourier series.Ann. of Math.,73 (1961), 87–109.MathSciNetGoogle Scholar
  11. [11]
    E. M. Stein andG. Weiss,Introduction to Fourier analysis in Euclidean spaces. Princeton Univ. Press, Princeton, N. J. 1971.Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • Hajo Luers
    • 1
  1. 1.FB Mathematik Arbeitsgruppe 5Technische HochschuleDarmstadt

Personalised recommendations