Analysis Mathematica

, Volume 14, Issue 2, pp 175–184 | Cite as

On Riesz means with respect to a cylindric distance function

  • Hajo Luers


Distance Function Cylindric Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

О средних Рисса по цил индрической функции расстояния


Рассматривается обо бщенный мультиплика тор суммирования по Рисс у вида (1−ϱ) + λ , гдеϱ — функция расст ояния наR n =R j ×R k , определенная соотно шениемϱ(ξ)=max{¦ξ 1¦, ¦ξ 1¦},ξ=(ξ 1,ξ 2),ξ 1R J ,ξ 2R k ,j,k≧1,n=j+k. В случаеn=3 доказанно, чт о (1−ϱ) + λ ∈[L 1(R n )]1, еслиλ>1/2; если жеj≳=4, то ф ункция (1−ϱ) + λ ни для какогоλR не есть мультипли катор наL p (R n ). если\(\left| {\frac{1}{p} - \frac{1}{{2}}} \right| \geqq \frac{{3}}{{2(n - 1)}}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abramovitz andI. A. Stegun,Handbook of Mathematical Functions. Dover Publication, New York 1965.Google Scholar
  2. [2]
    H.Dappa,Quasiradiale Fouriermultiplikatoren. Dissertation, TH Darmstadt 1982.Google Scholar
  3. [3]
    H. Dappa andW. Trebels, OnL 1-Criteria for Quasi-Radial Fourier Multipliers with Applications to some Anisotropic Function Spaces.Analysis Math.,9 (1983), 275–289.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    A.Erdélyi, et al.,Tables of Integral Transforms, Vol. 1, McGraw-Hill, 1954.Google Scholar
  5. [5]
    M. Jodeit, A Note on Fourier Multipliers.Proc. Amer. Math. Soc.,27 (1971), 423–424.MATHMathSciNetGoogle Scholar
  6. [6]
    W. Littman, Multipliers inL p and interpolation.Bull. Amer. Math. Soc.,71 (1965), 764–766.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    H.Luers,Quasiradiale Fouriermultiplikatoren mit Betragsfunktionen, bei denen Hauptkrümmungen der Einheitssphäre verschwinden. Dissertation, TH Darmstadt 1985.Google Scholar
  8. [8]
    J. Peetre, Application de la théorie des espaces d'interpolation dans l'analyse harmonique.Ricerche Mat.,15 (1966), 3–36.MATHMathSciNetGoogle Scholar
  9. [9]
    A. N. Podkorytov, Summation of multiple Fourier series over polyhedra.Vestnik Leningrad Univ. Math.,13 (1981), 69–77.MATHGoogle Scholar
  10. [10]
    E. M. Stein, On certain exponential sums arising in multiple Fourier series.Ann. of Math.,73 (1961), 87–109.MathSciNetGoogle Scholar
  11. [11]
    E. M. Stein andG. Weiss,Introduction to Fourier analysis in Euclidean spaces. Princeton Univ. Press, Princeton, N. J. 1971.Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • Hajo Luers
    • 1
  1. 1.FB Mathematik Arbeitsgruppe 5Technische HochschuleDarmstadt

Personalised recommendations