Advertisement

On Schwarz differentiability. IV

  • S. N. Mukhopadhyay
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Auerbach, Sur les dérivées généralisées,Fund. Math.,8 (1926), p. 49. (The author had no access to this memoir.)Google Scholar
  2. [2]
    Z. Charzyński, Sur les fonctions dont la dérivée symétrique est partout finie,Fund Math.,21 (1933), p. 214.Google Scholar
  3. [3]
    J. A. Clarkson, A property of derivatives,Bull. Amer. Math. Soc. 53 (1947), p. 124.Google Scholar
  4. [4]
    I. S. Gál, On the fundamental theorem of the calculus,Trans. Amer. Math. Soc.,86, No. 2 (1957), p. 309.Google Scholar
  5. [5]
    F. C. Hsiang, On differentiable functions,Bull. Amer. Math. Soc. 66 (1960), p. 382.Google Scholar
  6. [6]
    A. Khintchine, Recherches sur la structure des fonctions mesurables,Fund. Math.,9 (1927), p. 212.Google Scholar
  7. [7]
    B. K. Lahiri, A note on derivative,Bull. Cal. Math. Soc.,50, No. 2. (1958), p. 68.Google Scholar
  8. [8]
    B. K. Lahiri, On non-uniform differentiability,Amer. Math. Monthly,67, No. 7. (1960), p. 649.Google Scholar
  9. [9]
    S. Marcus, On a theorem of Denjoy and on approximate derivative,Monatsh. Math.,66 (1962), p. 435.Google Scholar
  10. [10]
    S. Mazurkiewicz, O pierwzej pochodnej uogólnionej (Sur la dérivée premiěre généralisée),Prace. mat. fiz.,28 (1917), p. 79. (The author had no access to this memoir.)Google Scholar
  11. [11]
    S. Mazurkiewicz, Sur la dérivée première généralisée,Fund. Math.,11 (1928), p. 145.Google Scholar
  12. [12]
    S. N. Mukhopadhyay, On Schwarz differentiability-I. Forth-coming inProc. Nat. Acad. Sc. India.Google Scholar
  13. [13]
    S. N. Mukhopadhyay, On Schwarz differentiability-II.Rev. Roum. Math. pures. Appl.,9 No. 9 (1964), p. 859.Google Scholar
  14. [14]
    I. P. Natanson,Theory of functions of a real variable, Vol. II (New York, 1960), p. 36.Google Scholar
  15. [15]
    S. Saks,Theory of the integral (Warszawa, 1937), p. 261.Google Scholar
  16. [16]
    W. Sierpiński, Sur une hypothèse de M. Mazurkiewicz,Fund. Math.,11 (1928), p. 148.Google Scholar
  17. [17]
    E. Szpilarajn, Remarque sur la dérivée symétrique,Fund. Math.,21 (1933), p. 226.Google Scholar

Copyright information

© Akadémiai Kiadó 1966

Authors and Affiliations

  • S. N. Mukhopadhyay
    • 1
  1. 1.BurdwanIndia

Personalised recommendations