A lattice-theoretic discussion of some problems in additive ideal theory

  • L. Fuchs


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Birkhoff,Lattice theory, Amer. Math. Soc. Coll. Publ., vol. 25, 2nd ed. (New York, 1948).Google Scholar
  2. [2]
    Ch. W. Curtis, On additive ideal theory in general rings,Amer. J. Math.,74 (1952), pp. 687–700.Google Scholar
  3. [3]
    L. Fuchs, On quasi-primary ideals,Acta Sci. Math. Szeged,11 (1947), pp. 174–183.Google Scholar
  4. [4]
    L. Fuchs, On a special property of the principal components of an ideal,Kgl. Norske Vid. Selsk. Forh.,22 (1949), pp. 28–30.Google Scholar
  5. [5]
    L. Fuchs, On primal ideals,Proc. Amer. Math. Soc.,1 (1950), pp. 1–6.Google Scholar
  6. [6]
    L. Fuchs, The meet-decomposition of elements in lattice-ordered semi-groups,Acta Sci. Math. Szeged,12A (1950), pp. 105–111.Google Scholar
  7. [7]
    W. Krull, Axiomatische Begründung der allgemeinen Idealtheorie,Sitzungsberichte d. phys.-med. Sozietät Erlangen,56 (1924), pp. 47–63.Google Scholar
  8. [8]
    W. Krull, Zur Theorie der zweiseitigen Ideale in nichtkommutativen Bereichen,Math. Zeitschrift,28 (1928), pp. 481–503.Google Scholar
  9. [9]
    W. Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung,Math. Annalen,101 (1929), pp. 729–744.Google Scholar
  10. [10]
    W. Krull,Idealtheorie, Ergebnisse d. Math. u. Grenzgeb., IV. 3. (Berlin, 1935).Google Scholar
  11. [11]
    E. Noether, Idealtheorie in RingbereichenMath. Annaien,83 (1921), pp. 24–66.Google Scholar
  12. [12]
    B. L. van der Waerden,Moderne Algebra, vol. II, 2nd ed. (Berlin, 1940).Google Scholar

Copyright information

© Magyar Tudomänyos Akadémia 1954

Authors and Affiliations

  • L. Fuchs
    • 1
  1. 1.Budapest

Personalised recommendations