Advertisement

Periodica Mathematica Hungarica

, Volume 10, Issue 4, pp 285–292 | Cite as

Functional equations and linear transformations, IIIC: Permutability

  • B. P. Duggal
Article

AMS (MOS) subject classifications (1970)

Primary 44A15 Secondary 39A15 46E30 

Key words and phrases

GlassesGλ andIμ, combinations communitativity O-adjoint mappings dense linear manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. P. Duggal, Functional equations and linear transformations, II: ClassesG λ andI μ,J. Indian Math. Soc. 38 (1974), 98–120.MR 52 # 11401Google Scholar
  2. [2]
    B. P. Duggal, Functional equations and linear transformations, IIIA: Permutability and inversion,Period. Math. Hungar. 9 (1978), 93–107.CrossRefGoogle Scholar
  3. [3]
    B. P. Duggal, Near normality of a class of transforms,Acta Sci. Math. (Szeged),40 (1978), 237–242.Google Scholar
  4. [4]
    H. Kober, On certain linear operations and relations between them.Proc. London Math. Soc. 11 (1961), 434–456.MR 24 # A1025Google Scholar
  5. [5]
    H. Kober, The extended Weyl integral and related operations,Proc. Amer. Math. Soc. 19 (1968), 285–291.MR 36 # 5623Google Scholar
  6. [6]
    H. Kober, A modification of Hilbert transforms, the Weyl integral and functional equations,J. London, Math. Soc. 42 (1967), 42–50.MR 34 # 3236Google Scholar
  7. [7]
    G. O. Okikiolu, On fundamental operators inL p-spaces and their applications,Amer. J. Math. 90 (1968), 1074–1102.Zbl. 174, 195Google Scholar
  8. [8]
    G. O. Okikiolu, Fractional integrals of theH α-type,Quart. J. Math. Oxford Ser. 18 (1967), 33–42,MR 35 # 2096Google Scholar
  9. [9]
    G. O. Okikiolu,Aspects of the theory of bounded linear operators in L p-spaces, Academic Press, London, 1971.Zbl.219, 44002Google Scholar
  10. [10]
    G. O. Okikiolu, Applications of fundamental operators: The operatorF δ(v),Proc. London Math. Sco. 19 (1969), 601–624.MR 40 # 7885Google Scholar

Copyright information

© Akadémiai Kiadó 1979

Authors and Affiliations

  • B. P. Duggal
    • 1
  1. 1.Mathematics DepartmentUniversity of NairobiNairobiKenya

Personalised recommendations