Skip to main content
Log in

Mechanismen der intestinalen Nährstoffresorption

  • Übersicht
  • Published:
Zeitschrift für Ernährungswissenschaft Aims and scope Submit manuscript

Zusammenfassung

Die Epithelzelle der Dünndarmschleimhaut vermittelt die Nährstoffaufnahme aus dem intestinalen Lumen in das Verteilersystem des Blutkreislaufs. Der Transferprozeß durch diese ausgeprägt polare Zelle setzt sich aus drei Teilvorgängen zusammen: dem Eintritt von Substanzen durch die Bürstensaummembran, dem Durchqueren eines metabolisch aktiven Intrazellularraumes und dem Austritt an der basolateralen Membran. Es werden die grundsätzlichen Transfermechanismen — einfache Diffusion, erleichterte Diffusion, Antiport- und Symportsysteme, elektroneutrale und elektrogene Vorgänge — beschrieben. Welche Bedeutung die Metabolisierung von Nährstoffen in der Epithelzelle für Transportvorgänge haben kann, wird am Beispiel des Glucose- und Lactatstoffwechsels und der daran gekoppelten H+-Ionen-Sekretion der Epithelzelle erörtert. Das durch die Protonensekretion erzeugte „saure Mikroklima“ an der mukosalen Oberfläche des Epithels hat seinerseits einen bisher wenig beachteten Einfluß insbesondere auf die Resorption schwacher Elektrolyte, wie dies am Beispiel der Nicotinsäureresorption überzeugend nachgewiesen wurde. Es kann angenommen werden, daß dem H+-Ionen-Gradienten an der Oberfläche resorbierender Epithelien eine dem Na+-Gradienten vergleichbare Bedeutung als treibende Kraft der Nährstoffresorption zukommt.

Summary

The nutrient uptake from the intestinal lumen into the distributing blood circulation is mediated by the epithelial cell of the small intestine. The transfer process through this distinctly polar cell consists of three partial events: entrance of substances through the brush-border membrane, traversal of a metabolic active intracellular space and exit through the baso-lateral membrane. The fundamental transfer mechanisms — simple diffusion, facilitated diffusion, antiport and symport systems, electroneutral and electrogenic processes — are described. The significance of nutrient metabolization for transport processes is discussed: proton secretion by the epithelial cell coupled to the glucose and lactate metabolization is quoted as an illustration.

The “acid microclimate” resulting from this proton secretion on the mucosal surface has a significant influence on weak-electrolyte absorption. This effect was clearly demonstrated for in vitro uptake of nicotinic acid into the intestinal tissue. It can be assumed that — similar to the role of a Na+-gradient — the proton gradient on the surface of absorptive epithelia is highly significant as a driving force of nutrient absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Berteloot A (1984) Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na+-, K+- and H+-gradients. Biochim Biophys Acta 775:129–140

    Article  CAS  Google Scholar 

  2. Blair JA, Lucas ML, Matty AJ (1975) Acidification in the rat proximal jejunum. J Physiol 245:333–350

    Article  CAS  Google Scholar 

  3. Daniel H (1982) In-vitro-Kinetik des intestinalen Transportes von Pyridoxin und Riboflavin — Vergleich mit dem Transport von D-Glucose. Dissertation, Gießen

  4. Daniel H, Rehner G (1986) Effect of metabolizable sugars on the mucosal surface pH of rat intestine. J Nutr 116:768–777

    CAS  Google Scholar 

  5. Daniel H, Neugebauer B, Kratz A, Rehner G (1985) Localization of acid microclimate along intestinal villi of rat jejunum. Am J Physiol 248: G 293-G 298

    CAS  Google Scholar 

  6. Danisi G, Murer H, Straub RW (1984) Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am J Physiol 246: G 180-G 186

    CAS  Google Scholar 

  7. Elbert J, Daniel H, Renner G (1986) Intestinal uptake of nicotinic acid as a function of microclimate-pH. Internat J Vit Nutr Res 56:85–93

    CAS  Google Scholar 

  8. Ganapathy V, Leibach FH (1985) Is intestinal peptide transport energized by a proton gradient? Am J Physiol 249:G 153-G 160

    CAS  Google Scholar 

  9. Hogben CAM, Schanker LS, Brodie BB (1957) Mechanism of intestinal absorption of drugs. Federation Proc 16:307–308

    Google Scholar 

  10. Komai T, Shindo H (1974) Structural specifities for the active transport system of thiamine in rat small intestine. J Nutr Sci Vitaminol 20:179–187

    Article  CAS  Google Scholar 

  11. Porteus JW (1977) The regulation fo glucose metabolism during its oxygen-dependent translocation through the columnar absorptive cells of rat jejunum. In: Kramer M, Lauterbach F (eds) Intestinal Permeation, Excerpta Medica, Amsterdam Oxford, 240–260

    Google Scholar 

  12. Pritchard P, Porteus JW (1977) Steady-state metabolism and transport of D-glucose by rat small intestine in vitro. Biochem J 164:1–14

    Article  CAS  Google Scholar 

  13. Schron CM, Washington C, Blitzer BL (1985) The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. J Clin Invest 76:2030–2033

    Article  CAS  Google Scholar 

  14. Shiau YF, Levine GM (1980) pH dependence of micellar diffusion and dissociation. Am J Physiol 239:G 177-G 182

    CAS  Google Scholar 

  15. Wilson HT (1953) Lactate and hydrogen ion gradients developed across the rat intestine in vitro. Biochim Biophys Acta 11:448–449

    Article  CAS  Google Scholar 

  16. Wilson HT (1956) The role of lactic acid production in glucose absorption from the intestine. J Biol Chem 222:751–763

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nach einem Vortrag, gehalten auf einer akademischen Feier zu Ehren von Prof. Dr. med. Wolfgang Tolckmitt, Gießen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, H. Mechanismen der intestinalen Nährstoffresorption. Z Ernährungswiss 25, 209–219 (1986). https://doi.org/10.1007/BF02019571

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02019571

Schlüsselwörter

Navigation