Skip to main content
Log in

Suppression of intimal hyperplasia in a rabbit model of arterial balloon injury by enalaprilat but not dimethyl sulfoxide

  • Original Articles
  • Published:
Annals of Vascular Surgery

Abstract

Intimal hyperplasia appears to result from the deposition of collagen and matrix by medial myofibroblasts, which are stimulated in response to vascular injury. We hypothesized that pharmacologic inhibitors of fibroblast proliferation would suppress the development of intimal hyperplasia. We evaluated the effect of two agents known to inhibit fibroblast proliferation in vitro: enalaprilat, an angiotensin-converting enzyme (ACE) inhibitor, and dimethyl sulfoxide (DMSO), an organic solvent. Thirty-five New Zealand white rabbits underwent standardized balloon catheter injury of the left common carotid artery. Experimental groups received daily intramuscular injections of the following: group I (n = 15), saline solution; group II (n = 10), 0.07 mg/kg enalaprilat; and group III (n = 10), 2 ml/kg of a 25% by weight DMSO solution. Injections were started 1 day prior to injury and continued 5 days a week for 8 weeks. Carotid arteries were perfusion-fixed at 12 weeks and cross-sectioned for measurement by planimetry. Intimal hyperplasia was measured as the ratio of the absolute area of intimal hyperplasia to the normalized area enclosed by the internal elastic lamina (IH/IEL) and was expressed as a percent. Mean values for IH/IEL were as follows: group I (control), 20.6 ± 2.3%; group II (enalaprilat), 9.5 ± 0.7%; and group III (DMSO), 17.6 ± 2.6%. Enalaprilat-treated animals demonstrated a statistically significant suppression of intimal hyperplasia compared with controls (p<0.01, ANOVA, Student'sttest), whereas the DMSO-treated group did not. We conclude that enalaprilat is effective in suppressing the development of intimal hyperplasia in this model of arterial injury. These results support the theory that the smooth muscle cell mitogen angiotensin II plays an important role in the proliferation of medial myofibroblasts following vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCann R, Hagen P-O, Fuchs J. Aspirin and dipyridamole decrease intimal hyperplasia in experimental vein grafts. Ann Surg 1980;191:238–243.

    PubMed  CAS  Google Scholar 

  2. Radic ZS, O'Malley MK, Mikat EM, et al. The role of aspirin and dipyridamole on vascular DNA synthesis and intimal hyperplasia following deendothelialization. J Surg Res 1986;41:84–91.

    Article  PubMed  CAS  Google Scholar 

  3. Landymore RW, Karmazyn M, MacAulay MA, et al. Correlation between the effects of aspirin and dipyridamole on platelet function and prevention of intimal hyperplasia in autologous vein grafts. Can J Cardiol 1988;4:56–59.

    PubMed  CAS  Google Scholar 

  4. Quinnones-Baldrich W, Ziomek S, Henderson T, et al. Patency and intimal hyperplasia: The effect of aspirin on small arterial anastomoses. Ann Vasc Surg 1988;2:50–56.

    Article  PubMed  Google Scholar 

  5. Chervu A, Moore WS, Quinnones-Baldrich WJ, et al. Efficacy of corticosteroids in suppression of intimal hyperplasia. J Vasc Surg 1989;10:129–134.

    Article  PubMed  CAS  Google Scholar 

  6. Colburn MD, Moore WS, Gelabert HA, et al. Dose responsive suppression of myointimal hyperplasia by dexamethasone. J Vasc Surg 1992;15:510–518.

    Article  PubMed  CAS  Google Scholar 

  7. Stenchever MA, Hopkins AL, Sipes J. Dimethyl sulfoxide and related compounds. Some effects on human fibroblasts in vitro. Proc Soc Exp Biol Med 1967;126:270–273.

    PubMed  CAS  Google Scholar 

  8. Berliner DL, Ruhmann AG. The influence of dimethyl sulfoxide on fibroblastic proliferation. Ann NY Acad Sci 1967;141:159–164.

    PubMed  CAS  Google Scholar 

  9. Katsuda S, Okada Y, Nakanishi I, et al. The influence of dimethyl sulfoxide on cell growth and ultrastructural features of cultured smooth muscle cells. J Electron Microsc 1984;33:239–241.

    CAS  Google Scholar 

  10. Katsuda S, Okada Y, Nakanishi I, et al. Inhibitory effect of dimethyl sulfoxide on the proliferation of cultured arterial smooth muscle cells: Relationship to the cytoplasmic microtubules. Exp Mol Pathol 1988;48:48–58.

    Article  PubMed  CAS  Google Scholar 

  11. Layman DL. Growth inhibitory effects of dimethyl sulfoxide and dimethyl sulfone on vascular smooth muscle and endothelial cells in vitro. In Vitro Cell Dev Biol 1987;23:422–428.

    PubMed  CAS  Google Scholar 

  12. Kedar I, Sohar E. Dimethyl sulfoxide in experimental atherosclerosis of the rabbit. Isr J Med Sci 1981;17:289–291.

    PubMed  CAS  Google Scholar 

  13. Layman DL, Alam SS, Newcomb KC. Suppression of atherosclerosis in cholesterolemic rabbits by dimethyl sulfoxide. Ann NY Acad Sci 1983;411:336–339.

    PubMed  CAS  Google Scholar 

  14. Powell JS, Clozel JP, Müller RK, et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 1989;245:186–188.

    PubMed  CAS  Google Scholar 

  15. Roux S, Clozel J, Kuhn H. Cliazapril inhibits wall thickening of vein bypass graft in the rat. Hypertension 1991;18[Suppl II]:I143-I146.

    Google Scholar 

  16. Powell JS, Müller RKM, Rouge M, et al. The proliferative response to vascular injury is suppressed by angiotensinconverting enzyme inhibition. J Cardiovasc Pharmacol 1990;16(Suppl)(4):S42-S49.

    Article  PubMed  CAS  Google Scholar 

  17. O'Donohoe MK, Schwartz LB, Radic ZS, et al. Chronic ACE inhibition reduces intimal hyperplasia in experimental vein grafts. Ann Surg 1991;214:727–732.

    Article  PubMed  Google Scholar 

  18. Dzau VJ. Vascular angiotensin pathways: A new therapeutic target. J Cardiovasc Pharmacol 1987;10(Suppl 7):S9-S16.

    PubMed  CAS  Google Scholar 

  19. Penit J, Faure M, Jard S. Vasopressin and angiotensin II receptors in rat aortic smooth muscle cells in culture. Am J Physiol 1983;244:E72-E82.

    PubMed  CAS  Google Scholar 

  20. Griendling K, Tsuda T, Berk BC, et al. Angiotensin II stimulation of vascular smooth muscle. J Cardiovasc Pharmacol 1989;14(Suppl 6):S27-S33.

    PubMed  CAS  Google Scholar 

  21. Gimbrone M, Alexander RW. Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science 1975;189:219–220.

    PubMed  CAS  Google Scholar 

  22. Toda N. Endothelium-dependent relaxation induced by angiotensin II and histamine in isolated arteries of dog. Br J Pharmacol 1984;81:301–307.

    PubMed  CAS  Google Scholar 

  23. Campbell-Boswell M, Robertson AL. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 1981;35:265.

    Article  PubMed  CAS  Google Scholar 

  24. Geisterfer AA, Peach MJ, Owens JK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988;62:749–756.

    PubMed  CAS  Google Scholar 

  25. Osterrieder W, Müller R, Powell J, et al. The proliferative response to vascular injury is suppressed by angiotensinconverting enzyme inhibition. J Cardiovasc Pharmacol 1991;18(Suppl II):S1160–1164.

    Google Scholar 

  26. Clozel J, Hess P, Michael C, et al. Inhibition of converting enzyme and neointima formation after vascular injury in rabbits and guinea pigs. Hypertension 1991;18[Suppl II]:II55-II59.

    PubMed  CAS  Google Scholar 

  27. Hanson S, Powell J, Dodson T, et al. Effects of angiotensin converting enzyme inhibition with cilazapril on intimal hyperplasia in injured arteries and vascular grafts in the baboon. Hypertension 1991;18[Suppl II]:II70-II76.

    PubMed  CAS  Google Scholar 

  28. Chopra M, Scott N, McMurray J, et al. Captopril: A free radical scavenger. Br J Clin Pharmacol 1989;27:396–399.

    PubMed  CAS  Google Scholar 

  29. Sacks T, Moldow C, Craddock P, et al. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes: An in vitro model of immune vascular damage. J Clin Invest 1978;61:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  30. Kedar I, Jacob E, Bar-Natan N, et al. Dimethyl sulfoxide in acute ischemia of the kidney. Ann NY Acad Sci 1983;411:131–134.

    PubMed  CAS  Google Scholar 

  31. Ravid M, Van-Dyk D, Bernheim J, et al. The protective effect of dimethyl sulfoxide in experimental ischemia of the intestine. Ann NY Acad Sci 1983;411:100–104.

    PubMed  CAS  Google Scholar 

  32. Feller A, Roth A, Russell R, et al. Experimental evaluation of oxygen free radical scavengers in the prevention of reperfusion injury to skeletal muscle. Ann Plast Surg 1989;22:321–330.

    PubMed  CAS  Google Scholar 

  33. James H, Cornell W, del Bigio M, et al. Dimethyl sulfoxide in brain edema and intracranial pressure. Ann NY Acad Sci 1983;411:253–260.

    PubMed  CAS  Google Scholar 

  34. Brown F, Johns L, Mullan S. Dimethyl sulfoxide therapy following penetrating brain injury. Ann NY Acad Sci 1983;411:245–252.

    PubMed  CAS  Google Scholar 

  35. Rucker N. Combined pharmacologic and surgical treatments for acute spinal cord trauma. Ann NY Acad Sci 1983;411:191–199.

    PubMed  CAS  Google Scholar 

  36. Bennett W, Bristol T, Weaver W, et al. Lack of nephrotoxicity of dimethyl sulfoxide in man and laboratory animals. Ann NY Acad Sci 1983;411:19–27.

    PubMed  Google Scholar 

  37. Kulali A, Akar M, Baykut L. Dimethyl sulfoxide in the management of patients with brain swelling and increased intracranial pressure after severe closed head injury. Neurochirurgia 1990;33:177–180.

    PubMed  Google Scholar 

  38. Salim A. Role of oxygen-derived free radical scavengers in the treatment of recurrent pain produced by chronic pancreatitis. Arch Surg 1991;126:1109–1114.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the Joash Foundation and the Veterans Administration.

We would like to acknowledge the support of Merck Sharp & Dohme of West Point, Pa., for generously supplying the enalaprilat (Vasotec I.V.) used in this study.

About this article

Cite this article

Law, M.M., Colburn, M.D., Hajjar, G.E. et al. Suppression of intimal hyperplasia in a rabbit model of arterial balloon injury by enalaprilat but not dimethyl sulfoxide. Annals of Vascular Surgery 8, 158–165 (1994). https://doi.org/10.1007/BF02018864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018864

Keywords

Navigation