Advertisement

Periodica Mathematica Hungarica

, Volume 3, Issue 3–4, pp 319–337 | Cite as

On the metric theory of euclidean space curves I

  • J. Szenthe
Article
  • 22 Downloads

Keywords

Euclidean Space Space Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alexits, La torsion des espaces distanciés,Compositio Math. 6 (1938), 471–477.Google Scholar
  2. [2]
    G. Alexits, Der Torsionsbegriff in metrischen Räumen,Math. Fiz. Lapok 46 (1939), 13–30.Google Scholar
  3. [3]
    G. Alexits andE. Egerváry, Fondements d'une théorie générale de la courbure linéaire,Comment. Math. Helv. 13 (1940), 257–276.CrossRefGoogle Scholar
  4. [4]
    F. Alt,Über eine metrische Definition der Krümmung einer Kurve, Dissertation, Vienna, 1931.Google Scholar
  5. [5]
    F. Alt, Zur Theorie der Krümmung,Ergebnisse Math. Koll. Wien 3 (1932), 5–6.Google Scholar
  6. [6]
    F. Alt, Zur Theorie der Krümmung,Ergebnisse Math. Koll. Wien 4 (1932), 4.Google Scholar
  7. [7]
    L. M. Blumenthal,Theory and applications of distance geometry, Oxford, 1953.Google Scholar
  8. [8]
    L. M. Blumenthal andK. Menger,Studies in geometry, San Francisco, 1970.Google Scholar
  9. [9]
    G. Bouligand,Introduction à la géométrie infinitésimale directe, Paris, 1932.Google Scholar
  10. [10]
    E. Egerváry, Über die Kurven desn-dimensionalen euklidischen Raumes,Math. Term. Tud. Értesítő 59 (1940), 787–797.Google Scholar
  11. [11]
    Ph. Franklin, Derivatives of higher order as single limits,Bull. Amer. Math. Soc. 41 (1935), 573–582.Google Scholar
  12. [12]
    H. Gluck, Higher curvatures of curves in euclidean spaces I,Amer. Math. Monthly 73 (1966), 699–704.Google Scholar
  13. [13]
    H. Gluck, Higher curvatures of curves in euclidean spaces II,Amer. Math. Monthly 74 (1967), 1049–1056.Google Scholar
  14. [14]
    K. Menger, Zur Metrik der Kurven,Math. Ann. 103 (1930), 466–501.CrossRefGoogle Scholar
  15. [15]
    Chr. Pauc,Les méthodes directes en géométrie différentielle, Paris, 1941.Google Scholar
  16. [16]
    H. Whitney,Geometric integration theory, Princeton, 1957.Google Scholar

Copyright information

© Akadémiai Kiadó 1973

Authors and Affiliations

  • J. Szenthe
    • 1
  1. 1.József Attila Tudományegyetem Bolyai IntézeteSzegedHungary

Personalised recommendations