Periodica Mathematica Hungarica

, Volume 3, Issue 3–4, pp 319–337 | Cite as

On the metric theory of euclidean space curves I

  • J. Szenthe
Article
  • 22 Downloads

Keywords

Euclidean Space Space Curf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alexits, La torsion des espaces distanciés,Compositio Math. 6 (1938), 471–477.Google Scholar
  2. [2]
    G. Alexits, Der Torsionsbegriff in metrischen Räumen,Math. Fiz. Lapok 46 (1939), 13–30.Google Scholar
  3. [3]
    G. Alexits andE. Egerváry, Fondements d'une théorie générale de la courbure linéaire,Comment. Math. Helv. 13 (1940), 257–276.CrossRefGoogle Scholar
  4. [4]
    F. Alt,Über eine metrische Definition der Krümmung einer Kurve, Dissertation, Vienna, 1931.Google Scholar
  5. [5]
    F. Alt, Zur Theorie der Krümmung,Ergebnisse Math. Koll. Wien 3 (1932), 5–6.Google Scholar
  6. [6]
    F. Alt, Zur Theorie der Krümmung,Ergebnisse Math. Koll. Wien 4 (1932), 4.Google Scholar
  7. [7]
    L. M. Blumenthal,Theory and applications of distance geometry, Oxford, 1953.Google Scholar
  8. [8]
    L. M. Blumenthal andK. Menger,Studies in geometry, San Francisco, 1970.Google Scholar
  9. [9]
    G. Bouligand,Introduction à la géométrie infinitésimale directe, Paris, 1932.Google Scholar
  10. [10]
    E. Egerváry, Über die Kurven desn-dimensionalen euklidischen Raumes,Math. Term. Tud. Értesítő 59 (1940), 787–797.Google Scholar
  11. [11]
    Ph. Franklin, Derivatives of higher order as single limits,Bull. Amer. Math. Soc. 41 (1935), 573–582.Google Scholar
  12. [12]
    H. Gluck, Higher curvatures of curves in euclidean spaces I,Amer. Math. Monthly 73 (1966), 699–704.Google Scholar
  13. [13]
    H. Gluck, Higher curvatures of curves in euclidean spaces II,Amer. Math. Monthly 74 (1967), 1049–1056.Google Scholar
  14. [14]
    K. Menger, Zur Metrik der Kurven,Math. Ann. 103 (1930), 466–501.CrossRefGoogle Scholar
  15. [15]
    Chr. Pauc,Les méthodes directes en géométrie différentielle, Paris, 1941.Google Scholar
  16. [16]
    H. Whitney,Geometric integration theory, Princeton, 1957.Google Scholar

Copyright information

© Akadémiai Kiadó 1973

Authors and Affiliations

  • J. Szenthe
    • 1
  1. 1.József Attila Tudományegyetem Bolyai IntézeteSzegedHungary

Personalised recommendations