Advertisement

Periodica Mathematica Hungarica

, Volume 6, Issue 1, pp 103–107 | Cite as

Chromatic number and girth

  • R. J. Cook
Article

Keywords

Chromatic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger,Proc. London Math. Soc., (3)7 (1957), 161–195.Google Scholar
  2. [2]
    P. Erdős, Graph theory and probability,Canad. J. Math. 11 (1959), 34–38.Google Scholar
  3. [3]
    P. Erdős, On circuits and subgraphs of chromatic graphs,Mathematika 9 (1962), 170–175.Google Scholar
  4. [4]
    H. Grötzsch, Zur Theorie der diskreten Gebilde VII. Ein Dreifarbensatz für dreikreisfrei Netze auf der Kugel,Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8 (1958–9), 109–120.Google Scholar
  5. [5]
    F. Harary,Graph Theory, New York, 1969.Google Scholar
  6. [6]
    P. J. Heawood, Map colour theorem,Quart. J. Math. 24 (1890), 332–338.Google Scholar
  7. [7]
    H. V. Kronk, The chromatic number of triangle-free graphs,Graph Theory and Applications, New York, 1972.Google Scholar
  8. [8]
    H. V. Kronk andA. T. White, A 4-color theorem for toroidal graphs,Proc. Amer. Math. Soc. 34 (1972), 83–86.Google Scholar
  9. [9]
    G. Ringel andJ. W. T. Youngs, Solution of the Heawood mapcoloring problem,Proc. Nat. Acad. Sci. U.S.A.,60 (1968), 438–445.Google Scholar
  10. [10]
    W. T. Tutte,Connectivity in Graphs, Toronto, 1966.Google Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • R. J. Cook
    • 1
  1. 1.Department of Pure MathematicsUniversity CollegeCardiffWales

Personalised recommendations