Skip to main content
Log in

Retardation of coronary artery disease in humans by the calcium-channel blocker nifedipine: Results of the INTACT study (International Nifedipine Trial on Antiatherosclerotic Therapy)

  • Nifedipine and Atherogenesis
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Experimental studies have demonstrated a 30–50% reduction in the development of atheromatous lesions of the aorta in rabbits fed a diet rich in cholesterol when they were treated wity nifedipine. Based on these favorable results, we designed a multicenter, placebo (PL)-controlled, randomized, double-blind study, to test the effect of 80 mg nifedipine (NIF) per day versus placebo on the progression of mild coronary artery disease (CAD) (further development of existing stenoses, especially formation of new stenoses and occlusions) over a duration of 3 years. Progression of CAD was assessed by coronary angiograms performed at entrance and at completion of the study, using a computer-assisted analysis system (CAAS) to quantitate various stenosis parameters (percent degree of stenosis and minimal stenosis diameter). Of the 425 patients enrolled, 348 (82%) underwent a second angiogram; 66 of them, however, terminated treatment prematurely after an average of 359 (placebo) and 467 days (nifedipine). A total of 282 patients (148 on placebo, 134 on nifedipine) completed the trial with full-length treatment. There were no differences between the two groups in the progression of the existing stenoses. Patients on nifedipine, however, demonstrated significantly fewer new lesions (stenoses >20% or occlusions) than those on placebo: In the 282 patients undergoing the full-length treatment, there were 73 patients on placebo (49%) with 118 new lesions (0.8/patient) and 54 patients on nifedipine (40%) with 78 new lesions (0.58/patient), a difference of −27% (p=0.031 by Cochran's linear trend test). The difference, was greatest in the left anterior descending branch, with 28 patients on placebo developing 33 new lesions (0.22/patient), versus 16 patients on nifedipine with 18 new lesions (0.13/patient) (−40%; p=0.045); and in the left circumflex branch, where 34 patients on placebo exhibited 39 new lesions (0.26/patient) versus 23 patients on nifedipine with 22 new lesions (0.16/patient) (−38%, p=0.033). No differences were observed in the right coronary artery, the vessel with the highest number of existing and new lesions (0.29 [PL] versus 0.27 [NIF] new lesions/patient) (−7.6%, p=0.381). Hence, INTACT confirmed the previous experimental studies and demonstrates a significant reduction in newly formed coronary lesions in patients on nifedipine when compared with those on placebo, especially in the presence of early coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henry PD, Bentley K. Suppression of atherosclerosis in cholesterol-fed rabbits treated with nifedipine.J Clin Invest 1981;68:1366–1369.

    Article  PubMed  CAS  Google Scholar 

  2. Nayler WG, Dillon JS, Panagiotopoulos S, Sturrock WJ, Dihydropyridines and the ischaemic, myocardium. In: Lichtlen PR ed.6th Adalat Symposium. New Therapy of Ischemic Heart Disease and Hypertension. Amsterdam: Excerpta Medica, 1986:486–397.

    Google Scholar 

  3. Watanabe N, Ischikawa Y, Mukodani J, et al. Nifedipine suppresses arteriosclerosis in cholesterol-fed rabbits but not in WHHL-rabbits.Circulation 1985;77:II281.

    Google Scholar 

  4. Willis AL, Nagel B, Churchill V, et al. Antiatherosclerotic effects of nicardipine, and nifedipine in cholesterol-fed rabbits.Arteriosclerosis 1985;5:250–255.

    PubMed  CAS  Google Scholar 

  5. Ginsburg R, Davis K, Bristow MR, et al. Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary artery of cholesterol-fed rabbits.Lab Invest 1983;49:154–158.

    PubMed  CAS  Google Scholar 

  6. Sugano M, Nakashima Y, Matsushima T, et al. Suppression of atherosclerosis in cholesterol-fed rabbits by diltiazem injection.Atherosclerosis 1986;6:237–241.

    CAS  Google Scholar 

  7. Rouleau JL, Parmley WW, Stevens J, et al. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits.J Am Coll Cardiol 1983;6:1453–1460.

    Article  Google Scholar 

  8. Blumlein SL, Sievers R, Kidd P, Parmley WW. Mechanism of protection from atherosclerosis by verapamil in the cholesterol-fed rabbit.Am J Cardiol 1984;54:884–889.

    Article  PubMed  CAS  Google Scholar 

  9. Sievers RE, Rashid T, Garrett J, et al. Verapamil and diet: Progression of atherosclerosis in cholesterol-fed rabbits.Cardiovasc Drug Ther 1987;1:65–69.

    Article  CAS  Google Scholar 

  10. Habib JB, Bossaller, C, Henry PD, Suppression of atherogenesis in cholesterol-fed rabbits with a low dosed calcium antagonist (PN 2110)J Am Col Cardiol 1986;7:58A-60A.

    Google Scholar 

  11. Multiple Risk Factor Intervention Trial Research Group. Mortality rates after 10.5 years for participants in the Multiple Risk Factor Intervention Trial.JAMA 1990;263:1795–1801.

    Article  Google Scholar 

  12. Lipid Research Clinics Program. The lipid research clinics coronary primary prevention trial results: 1. Reduction in incidence of coronary heart disease.JAMA 1984;251:351–364.

    Article  Google Scholar 

  13. Detre KM, Levy RI, Kelsey SF et al. Secondary prevention and lipid lowering: Results and implications.Am Heart J 1985;110:1123–1127.

    Article  PubMed  CAS  Google Scholar 

  14. Levy RI, Brensike JF, Epstein S. The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: Results on the NHLBI-type II coronary intervention study.Circulation 1984; 69:325–336.

    PubMed  CAS  Google Scholar 

  15. The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease.JAMA 1975:231:360–381.

    Article  Google Scholar 

  16. Cohn K, Sakai FJ, Lengston MF Jr. Effect of clofibrate on progression of coronary artery disease: A prospective angiographic study in man.Am Heart J 1975;89:519–598.

    Article  Google Scholar 

  17. Frick MH, Elo O, Happa K, et al. Helsinki Heart Study: Primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors and incidence of coronary heart disease.N Engl J Med 1987:317:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  18. Rösch J, Antonovic R, Trenouth RS, et al. The natural history of coronary artery stenosis. A longitudinal angiographic assessment.Radiology 1976;119:513–517.

    PubMed  Google Scholar 

  19. Rafflenbeul W, Nellessen U, Galvao P, et al. Progression and regression of coronary artery disease as assessed with sequential coronary angiography.Z Kardiol 1984;73:(Suppl II):33–40.

    PubMed  Google Scholar 

  20. Nellessen U, Rafflenbeul W, Hecker H, Lichtlen P. The progression of coronary sclerosis. 6 years of evaluation using quantitative coronary angiography in 19 patients.Z Kardiol 1984;73:60–670

    Google Scholar 

  21. Lichtlen PR, Rafflenbeul W. Progression of coronary artery disease as judged from sequential angiography. In: Hauss WH, Wissler RW, eds.2nd Münster International Arteriosclerosis Symposium on Clinical Implications of Recent Research in Atherosclerosis. Opladen, 1985;70:101.

  22. Bruschke AVG, Wijers TS, Kolsters W, Landmann J. The anatomic evaluation of coronary artery disease demonstrated by coronary angiography in 256 nonoperated patients.Circulation 1981;63:527–530.

    PubMed  CAS  Google Scholar 

  23. Nellessen U, Hecker H, Raude E et al. Riboflavin as a drug marker.Die Med Well 1985;36:1478–1482.

    Google Scholar 

  24. Austen WG, Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease: Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular, Surgery, American Heart Association.Circulation 1975;52(Suppl):5–40.

    PubMed  Google Scholar 

  25. Reiber JHC, Koijman JC, Slager JC, et al. Computerassisted analysis of the severity of obstructions from coronary cineangiograms. Methodological review.Automat 1984;5:219–228.

    Google Scholar 

  26. Reiber JHC, Kooijman CJ, Slager CJ, et al. Coronary artery dimensions from cineangiograms—Methodology and validation of a computer-assisted analysis procedure.IEEE Trans Med Imag 1984;3:131–141.

    Article  CAS  Google Scholar 

  27. Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium- and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms.Circulation 1985;71:280–288.

    PubMed  CAS  Google Scholar 

  28. Jost S, Deckers J, Nellessen U, et al. Clinical application of quantitative coronary angiography—Preliminary results of the INTACT-Study (International Nifedipine Trial on Antiatherosclerotic Therapy).Int J Cardiac Imaging 1988;3:75–86.

    Article  CAS  Google Scholar 

  29. Jost S, Deckers J, Nellessen U, et al. Computer-assisted contour analysis technique in coronary angiographic followup trials: Results of the first angiograms from the INTACT-study.Z Kardiol 1989;78:23–32.

    PubMed  CAS  Google Scholar 

  30. Nellessen U, Rafflenbeul W, Jost S, et al. Effects of nifedipine and nitrates on coronary vasomotion.Eur Heart J 1988;9(Suppl A):83–88.

    PubMed  Google Scholar 

  31. Glagov S, Weisenberg E, Zarins CHK, et al. Compensatory enlargement of human atherosclerotic coronary arteries.N Engl J Med 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  32. Faggiotto A, Ross R, Harker L, Studies of hypercholesterolemia in the non-human primate. Changes that lead to fatty streak formation.Arteriosclerosis 1984;4:323–340.

    PubMed  CAS  Google Scholar 

  33. Freudenberg H, Lichtlen PR. Limitations of intravital coronary angiography. A comparison with postmortem results in 87 cases (abstract).Circulation 1981;63/64(Suppl IV):238.

    Google Scholar 

  34. Weiner BH, Ockene IS, Yarmolych J, et al. Comparison of pathologic and angiographic findings in a porcine preparation of coronary atherosclerosis.Circulation 1985;72:1081–1086.

    PubMed  CAS  Google Scholar 

  35. Brown BG, Lin JT, Kelsey S, et al. Progression of coronary atherosclerosis in patients with probable familial hypercholesterolemia. Quantitative arteriographic assessment of patients in NHLBE-type II study.Arteriosclerosis 1989; 9(Suppl I):181–190.

    Google Scholar 

  36. Rafflenbeul W, Urthaler F, Lichtlen P, James TN. Quantitative difference in “critical” stenosis between right and left coronary artery in man.Circulation 1980;62:1188–1196.

    PubMed  CAS  Google Scholar 

  37. Arntzenius AC, Kromhout D, Barth JD, et al. Diet, lipoproteins and the progression of coronary atherosclerosis. The Leiden intervention trial.N Engl J Med 1985;312:805–811.

    Article  PubMed  CAS  Google Scholar 

  38. Brensike JF, Levy RI, Kelsey SF, et al. Effects of therapy with cholestyramine on progression of coronary atherosclerosis: Results of the NHLBI Type II coronary intervention study.Circulation 1984;69:313–324.

    PubMed  CAS  Google Scholar 

  39. Blankenhorn DH, Nessim SA, Johnson RL, et al. Beneficial effects of combined colestipol-niacin therapy on coronary atheroscleroris and coronary, venous bypass grafts.JAMA 1987;257:3233–3240.

    Article  PubMed  CAS  Google Scholar 

  40. Frey M, Zorn J, Fleckenstein A, Fleckenstein-Grün G. Protection of arterial and arteriolar wall structure by specific calcium antagonists.Ann NY Acad Sci 1988;522:420–432.

    Article  PubMed  CAS  Google Scholar 

  41. Fleckenstein A. Model experiments on anticalcinotic and antatherosclerotic arterial protection with calcium antagonists.J Mol Cell Cardiol 1987;19(Suppl II):109–121.

    Article  PubMed  CAS  Google Scholar 

  42. Ross R. The pathogenesis of atherosclerosis—An update.N Engl J Med 1986;8:488–500.

    Article  Google Scholar 

  43. Henry PD. Calcium antagonists as antiatherogenic agents.Ann NY Acad Sci 1988;522:411–419.

    Article  PubMed  CAS  Google Scholar 

  44. Stein O, Halperin G, Stein Y. Long-term effects of verapamil on aortic smooth muscle cells cultured in the presence of hypercholeterolemic serum.Arteriosclerosis 1987;7:585–592.

    PubMed  CAS  Google Scholar 

  45. Etingin OR, Hajjar DT. Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit arterial smooth muscle cells.J Clin Invest 1985;75:1544–1558.

    Article  Google Scholar 

  46. Etingen DR, Hajjar DP. Calcium channel blockers enhance cholesteryl ester hydrolysis and decrease total cholesterol accumulation in human aortic tissue.Circulation Research 1990;66:185–190.

    PubMed  Google Scholar 

  47. Schmitz G, Robinek H, Beuck M, et al. Calcium antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I: Arteriosclerosis 1988;8:46–56.

    PubMed  CAS  Google Scholar 

  48. Handley DA, van Valen RG, Melden MK, Saunders RN. Suppression of rat carotid lesion development by the calcium channel blocker PN 200-110.Am J Pathol 1986;124:88–93.

    PubMed  CAS  Google Scholar 

  49. Jackson L J, Bush RC, Bowyer DE. Inhibitory effect of calcium antagonists on balloon catheter induced arterial smooth muscle cell proliferation and lesion size.Arteriosclerosis 1988;69:115–122.

    Article  CAS  Google Scholar 

  50. Betz E, Hammerle H, Strohschneider P. Inhibition of smooth muscle cell proliferation and endothelial permeability with flunarizine in vitro and in experimental atheromatosis.Res Exp Med 1985;185:325–340.

    Article  CAS  Google Scholar 

  51. Nilson J, Sjölund M, Palmberg L, et al. The calcium antagonist nifedipine inhibits arterial smooth muscle cell proliferation.Atherosclerosis 1985;58:109–22.

    Article  PubMed  Google Scholar 

  52. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, et al. Retardation of angiographic progression of coronary artery disease by nifedipine.Lancet 1990;335:1109–1113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

on behalf of the INTACT group investigators

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtlen, P.R., Hugenholtz, P.G., Rafflenbeul, W. et al. Retardation of coronary artery disease in humans by the calcium-channel blocker nifedipine: Results of the INTACT study (International Nifedipine Trial on Antiatherosclerotic Therapy). Cardiovasc Drug Ther 4 (Suppl 5), 1047–1068 (1990). https://doi.org/10.1007/BF02018315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018315

Key Words

Navigation