Skip to main content
Log in

Features of the angiographic evaluation of the INTACT study

  • Nifedipine and Atherogenesis
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

INTACT (International Nifedipine Trial on Antiatherosclerotic Therapy) is a prospective, placebo-controlled, randomized, double-blind, multicenter trial analyzing the influence of 80 mg nifedipine/day on the angiographic progression of early stage coronary atherosclerosis. Coronary angiograms were taken in identical projections before and after a treatment period of 3 years. Quantitative analysis of the angiograms was performed with the computer-assisted contour detection system CAAS. For definition purposes, the coronary artery system was subdivided into 25 different segments, including all anatomic variants. Measurement parameters of segments were mean and minimal diameter, and of stenoses minimal diameter, percentage diameter reduction (at least 20%), length, and plaque area. The variable extent of the changes of these parameters in the different projections analyzed per patient in the two study angiograms was considered by separate computation of the maximal, mean, and minimal changes over these projections; the comparison of the parameter changes between the two treatment groups was performed separately according to these three modes.

For all parameters, this comparison was performed on the basis of the individual 25 segments, as well as after aggregation of individual segments to arteries (RCA, LAD, and LCX), to groups of large and small segments, and to the entire coronary artery system.

Assessment of changes of the coronary (patho)morphology by quantitative analysis of coronary angiograms is associated with a number of methodical limitations, which may lead to a certain variability of the results. However, due to the doubleblind feature of INTACT, this variability should be comparable in the two groups of this study, allowing for a conclusive comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichten PR, Hugenholtz PG, Rafflebeul W, et al. Retardation of the progression of coronary artery disease in man by nifedipine; the INTACT-study (International Nifedipine Trial on Antiatherosclerotic Therap).Cardiovasc Drugs Ther, this issue.

  2. Lichtlen PR, Hugenholtz PG, Jost S, et al. International nifedipine trial on antiatherosclerotic therapy (INTACT) —baseline data and preliminary results.Therap Res 1989;10:77–102.

    Google Scholar 

  3. Lichtlen PR, Rafflenbeul W, Nellessen U, et al. INTACT (International Nifedipine Trial on Antiatherosclerotic Therapy).Cardiorasc Drugs Ther 1987;1:71–79.

    Article  CAS  Google Scholar 

  4. Jost S, Rafflenbeul W, Knop I, et al. Drug plasma levels and coronary vasodilation after isosorbide dinitrate chewing capsules.Eur Heart 1989;10(Suppl F):137–141.

    Google Scholar 

  5. Jost S, Rafflenbeul W, Gerhardt U, et al. Influence of ionic and non-ionic radiographic contrast media on the vasomotor tone of epicardial coronary arteries.Eur Heart J 1989;10(Suppl F):60–65.

    PubMed  Google Scholar 

  6. Jost S, Rafflenbeul W, Reil GH, et al. Elimination of variable vasomotor tone in repeated quantitative coronary angiography studies.Int J Cardiac Imag 1990, in press.

  7. Reiber JHC, Serruys PW, Kooijman CJ, et al. Approaches towards standardization in acquisition and quantitation of arterial dimensions from cineangiograms. In: Reiber JHC, Serruys PW, eds.State of the art in coronary arteriography. Dordrecht: Martinus Nijhoff, 1986:145–172.

    Google Scholar 

  8. Reiber JHC. Overview of quantitative coronary angiographic techniques: morphology, densitometry and standardazation of acquisition. In: Grundy SM, Bearn AG, eds.The role of cholesterol in atherosclerosis: New therapeutic opportunities. Philadelphia: Hanley Belfus, 1988:105–128.

    Google Scholar 

  9. Reiber JHC, Kooijman CJ, Slager CJ, et al. Coronary artery dimensions from cineangiograms-methodology and validation of a computer-assisted analysis procedure.IEEE Trans Med Imag 1984:3:131–141.

    Article  CAS  Google Scholar 

  10. Reiber JHC, Serruys PW, Kooijman CJ, et al. Assessment of short-, medium- and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms.Circulation 1985;71:280–288.

    PubMed  CAS  Google Scholar 

  11. Austen WG, Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease: Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association.Circulation 1985;51(Suppl):5–40.

    Google Scholar 

  12. Selzer RH, Shircore A, Lee PL, et al. A second look at quantitative coronary angiography: Some unexpected problems. In: Reiber JHC, Serruys PW, eds.State of the art in quantitative coronary arteriography. Dordrecht: Martinus Nijhoff, 1986:125–144.

    Google Scholar 

  13. Jost S, Rafflenbeul W, Lichtlen PR, Assessment of the vasomotility of epicardial coronary arteries with quantitative coronary angiography.Z Kardiol 1989;78(Suppl 6):143–148.

    PubMed  Google Scholar 

  14. Spears JR, Sandor T, Als AV, et al. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms.Circulation 1983;68:453–461.

    PubMed  CAS  Google Scholar 

  15. Jost S, Deckers J, Nellessen U, et al. Clinical application of quantitative coronary angiography-preliminary results of the INTACT study (International Nifedipine Trial on Antiatherosclerotic Therapy).Int J Cardiac Imag 1988;3:75–86.

    Article  CAS  Google Scholar 

  16. Glagov S, Weisenberg E, Zarins C, et al. Compensatory enlargement of human atherosclerotic coronary arteries.N Engl J Med 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  17. Isner JM, Donaldson RF, Fortin AH, et al. Attenuation of the media of coronary arteries in advanced atherosclerosis.Am J Cardiol 1986;58:937–939.

    Article  PubMed  CAS  Google Scholar 

  18. McPherson DD, Hiratzka LF, Lamberth WC, et al. Delineation of the extent of coronary atherosclerosis by highfrequency epicardial echocardiography.N Engl J Med 1987;316:304–309.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson MR, McPherson DD, Fleagle SR, et al. Videodensitometric analysis of human coronary stenoses: Validation in vivo by intraoperative high-frequency epicardial echocardiography.Circulation 1988;77:328–336.

    PubMed  CAS  Google Scholar 

  20. Mancini BJ, Higgins CHB. Digital subtraction angiography: A review of cardiac applications.Prog Cardiorasc Dis 1985;28:111–141.

    Article  CAS  Google Scholar 

  21. Arntzenius AC, Kromhout D, Barth JD, et al. Diet, lipoproteins and the progression of coronary atherosclerosis. The Leiden intervention trial.N Engl J Med 1985;312:805–811.

    Article  PubMed  CAS  Google Scholar 

  22. Ellis S, Sanders W, Goulet C, et al. Optimal detection of the progression of coronary artery disease: Comparison of methods suitable for risk factor intervention trials.Circulation 1986;74:1235–1246.

    PubMed  CAS  Google Scholar 

  23. Spears JR, Sandor T, Baim BS, et al. The minimal error in estimating coronary luminal cross sectional area from cineangiographic diameter measurements.Cathet Cardiorasc Diagu 1986;9:119–132.

    Article  Google Scholar 

  24. Nickoloff EL, Han J, Esser PD, et al. Evaluation of a cinevideodensitometric method for measuring vessel dimensions from digitized angiograms.Invest Radiol 1987;22:875–882.

    Article  PubMed  CAS  Google Scholar 

  25. Sandor T, Als A, Paulin S. Cine-densitometric measurement of coronary arterial stenoses.Cathel Cardiorasc Diagu 1979;5:229–245.

    Article  CAS  Google Scholar 

  26. Tobis J, Nalcioglu O, Johnston WD, et al. Videodensitometric determination of minimum coronary artery luminal diameter before and after angioplasty.Am J Cardiol 1987;59:38–44.

    Article  PubMed  CAS  Google Scholar 

  27. Katritsis D, Lythall DA, Anderson MH, et al. Assessment of coronary angioplasty by an automated digital angiographic method.Am Heart J 1988;116:1181–1187.

    Article  PubMed  CAS  Google Scholar 

  28. Sanz ML, Mancini J, LeFree MT, et al. Variability of quantitative digital subtraction coronary angiography before and after percutaneous transluminal coronary angioplasty.Am J Cardiol 1987;60:55–60.

    Article  PubMed  CAS  Google Scholar 

  29. Barrett W, Boone J. The effect of beam hardening and scatter on videodensitometric determination of percent stenosis.IEEE 1985:15–20.

  30. Seibert JA, Nalcioglu O, Roeck WW. Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy.Med Phys 1984;11:172–179.

    Article  PubMed  CAS  Google Scholar 

  31. Christensen EE, Curry IS, Dowdey JE.An introduction to the physics of diagnostic radiology, 2nd ed. Philadelphia: Lea and Febinger, 1978:158–170.

    Google Scholar 

  32. Jost S, Deckers J, Nellessen U, et al. Computer-assisted contour analysis technique in coronary angiographic followup trials: Results of the first angiograms from the INTACT-study.Z Kardiol 1989;78:23–32.

    PubMed  CAS  Google Scholar 

  33. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: Comparison of cineangiographic and necropsy findings.Ann Intern Med 1979;91:350–356.

    PubMed  CAS  Google Scholar 

  34. Schwartz JN, Kong Y, Hackel DB, et al. Comparison of angiographic and postmortem findings in patients with coronary artery disease.Am J Cardiol 1975;36:174–178.

    Article  PubMed  CAS  Google Scholar 

  35. Blankenhorn DH, Nessim SA, Johnson RL, et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts.JAMA 1987;257:3233–3240.

    Article  PubMed  CAS  Google Scholar 

  36. Bruschke AVG, Wijers TS, Klosters W, et al. The anatomic evolution of coronary artery disease demonstrated by coronary arteriography in 256 nonoperated patients.Circulation 1981;63:527–536.

    PubMed  CAS  Google Scholar 

  37. Gensini GG,Coronary arteriography. Mount Kisco, NY: Futura, 1975:272.

    Google Scholar 

  38. Moise A, Theroux P, Taeymans J, et al. Clinical and angiographic factors associated with progression of coronary artery disease.J Am Coll Cardiol 1984;3:659–667.

    Article  PubMed  CAS  Google Scholar 

  39. Nash DT, Gensini G, Esente P. Effect of lipid-lowing therapy on the progression of coronary atherosclerosis assessed by scheduled repetitive coronary arteriography.Int J Cardiol 1982;2:43–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, S., Deckers, J., Rafflenbeul, W. et al. Features of the angiographic evaluation of the INTACT study. Cardiovasc Drug Ther 4 (Suppl 5), 1037–1045 (1990). https://doi.org/10.1007/BF02018314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018314

Key Words

Navigation