Skip to main content
Log in

Quantitative analysis of antiatherosclerotic effect of nifedipine in cholesterol-fed rabbits

  • Nifedipine and Atherogenesis
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Reports concerning the effect of slow calciumchannel blockers on experimental atherosclerosis are controversial. We examined the antiatherosclerotic effect of nifedipine (40 mg/day for 16 weeks) on aorta of rabbits on diets containing 0.3%, 0.5%, and 1.0% cholesterol. There were no significant differences in levels of serum lipids with or without nifedipine in the same cholesterol-fed rabbits. The results obtained show that nifedipine suppressed the extent of lipid deposition and surface involvement (S.I) in aorta in 0.3% cholesterol-fed rabbits, whereas nifedipine only tended to suppress S.I. in 0.5% cholesterol-fed rabbits and had no effect in 1.0% cholesterol-fed rabbits. The log dose-response relationship of S.I. was obtained by plotting the concentration of cholesterol in the feed or the “integrated value” of the total serum cholesterol (TC), i.e., the cumulative sum of the serum TC values obtained at each week. The log, doseresponse curve was shifted in parallel with the right in nifedipine groups. The Lineweaver-Burk plot constructed from the dose-response curve had the same points crossing the ordinate with or without nifedipine. These results suggested that nifedipine suppressed S.I. in a competitive manner with cholesterol on the specific binding site of lipid deposition. Electron-microscopic findings also demonstrated that fat droplets in smooth muscle cells, extracellular matrix containing collagen, and elastic fibers decreased in nifedipinetreated rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenblum IY, Flora, L., Eisenstein R., The effect of disodium ethane-1-hydroxy-1, 1-diphosphonate (EHDP) on a rabbit model of athero-arteriosclerosis.Atherosclerosis 1975;22:411–424.

    Article  PubMed  CAS  Google Scholar 

  2. Kramsch DM, Aspen AJ, Apstein CS. Suppression of experimental atherosclerosis by the Ca++-antagonist lanthanum. Possible role of calcium in atherogenesis.J Clin Invest. 1980;65:967–981.

    Article  PubMed  CAS  Google Scholar 

  3. Kramsch DM, Aspen, AJ, Rozler, LJ. Atherosclerosis: Prevention by agents not affecting abnormal levels of blood lipids.Science 1981;213:1511–1512.

    Article  PubMed  CAS  Google Scholar 

  4. Robert, L, Brechemier, D, Godeau, G, et al. Prevention of experimental immune arteriosclerosis by calcitonin.Biochem Pharmacol 1977;26:2129–2135.

    Article  PubMed  CAS  Google Scholar 

  5. Henry, PD, Bentley KI. Suppression of atherogenesis in cholesterol-fed rabbits treated with nifedipine.J clin Invest 1981;68:1366–1369.

    Article  PubMed  CAS  Google Scholar 

  6. Willis AL, Nagel B, Churchill V, et al Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits.Arteriosclerosis 1985;5:250–255.

    PubMed  CAS  Google Scholar 

  7. Rouleau, JL, Parmley WW, Stevens FJ, et al. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits.J Am Coll Cardiol 1983;1:1453–1466.

    PubMed  CAS  Google Scholar 

  8. Blumlein SL, Sievers R, Kidd, P, Parmley WW. Mechanism of protection from atherosclerosis by verapamil in the cholesterol-fed rabbit.Am J Cardiol 1984;54:884–889.

    Article  PubMed  CAS  Google Scholar 

  9. Stender S, Ravn H, Haugegaard M, Kjeldsen K. Effect of verapamil on accumulation of free and esterified cholesterol in the thoracic aorta of cholesterol-fed rabbits.Atherosclerosis 1986;61:15–23.

    Article  PubMed  CAS  Google Scholar 

  10. Sievers RE, Rashid T, Garret J, et al. Verapamil and diet halt progression of atherosclerosis, in cholesterol fed rabbits.Cardiovasc Drugs Ther, 1987;1:65–69.

    Article  PubMed  CAS  Google Scholar 

  11. Ginsburg R, Davis K, Bristow MR, et al. Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary arteries of cholesterol-fed rabbits.Lab. Invest. 1983;49:154–158.

    PubMed  CAS  Google Scholar 

  12. Sugano M, Nakashima Y, Matsushima T, et al. Suppresion of atherosclerosis in cholesterol-fed rabbits by diltiazem injection.Arteriosclerosis 1986;6:237–241.

    PubMed  CAS  Google Scholar 

  13. Diccianni MB, Cardin AD, Britt AL, et al. Effect of a sustained release formulation of diltiazem on the development of atherosclerosis in cholesterol-fed rabbits.Atherosclerosis 1987;65:199–205.

    Article  PubMed  CAS  Google Scholar 

  14. Stender S, Stender I, Nordestgaard B, Kjeldsen K, No effect of nifedipine on atherogenesis in cholesterol-fed rabbits.Arteriosclerosis 1984;4:389–394.

    PubMed  CAS  Google Scholar 

  15. Overturf ML, Smith SA. Failure of nifedipine to reduce atherogenesis in cholesterol-fed rabbits.Artery 1986;13:267–282.

    PubMed  CAS  Google Scholar 

  16. Kritchevsky D, Tepper SA, Klurfeld DM. Flordipine, a calcium channel blocker, which does not influence lipidemia or atherosclerosis in cholesterol-fed rabbits.Atherosclerosis 1988;69:89–92.

    Article  PubMed  CAS  Google Scholar 

  17. Naito M, Kuzuya F, Asai K. et al. Ineffectiveness of Ca2+-antagonists nicardipine and diltiazem on experimental atherosclerosis in cholesterol-fed rabbits.Angiology 1984;35:622–627.

    Article  PubMed  CAS  Google Scholar 

  18. Van Nierkerk JLM, Hendriks TH, De Boer HHM, Van't Laar A. Does nifedipine suppress atherogenesis in WHHL rabbits?Atherosclerosis 1984;53:91–98.

    Article  PubMed  Google Scholar 

  19. Tilton GD, Buja LM, Bilheimer DW. Failure of a slow channel calcium antagonist, verapamil, to retard atherosclerosis in the Watanabe heritable hyperlipidemic rabbit: An animal model of familial hypercholesterolemia.J Am Coll Cardiol 1985;6:141–144.

    Article  PubMed  CAS  Google Scholar 

  20. Holman RL, McGill HC Jr, Strong JP, Geer JC. Technics for studying atherosclerotic lesions.Lab. Invest. 1958;7:42–47.

    PubMed  CAS  Google Scholar 

  21. Hirata M, Watanabe T. Regression of atherosclerosis in normotensive and hypertensive rabbit. A quantitative analysis of cholesterol-induced aorti- and coronary lesions with an image-processing system.Acta Pathol Jpn 1988;38:559–575.

    PubMed  CAS  Google Scholar 

  22. Takashima T, Kato H, Ohta Y, et al. Lipid deposition in aorta of cholesterol-fed rabbits. With special reference to the relationship between the area of lipid deposition and the concentration of serum total cholesterol.J Jpn Atheroscler Soc 1988;16:33–35.

    Google Scholar 

  23. Weibel ER, Kistler GS, Scherle WF. Practical stereological methods for morphometric cytology.J Cell Biol. 1966;30:23–38.

    Article  PubMed  CAS  Google Scholar 

  24. Stein O, Leitersdorf E, Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture.Arteriosclerosis 1985;5:35–44.

    PubMed  CAS  Google Scholar 

  25. Nakao J, Ito H, Ooyama T, et al. Calcium dependency of aortic smooth muscle cell migration induced by 12-1-hydroxy-5,8,10-14-eicosatetraenoic acid—Effect of A 23187, nicardipine and trifluoperazine.Atherosclerosis 1983;46:309–319.

    Article  PubMed  CAS  Google Scholar 

  26. Etingin OR, Hajjar DP. Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit arterial smooth muscle cells. A possible mechanism for its antiatherogenic effect.J Clin Invest 1985;75:1554–1558.

    Article  PubMed  CAS  Google Scholar 

  27. Seifert PS, Kazatchkine MD. The complement system in atherosclerosis.Atherosclerosis 1988;73:91–104.

    Article  PubMed  CAS  Google Scholar 

  28. Van Berkel TJC, Nagelkerke LF, Kruijt JK. The effect of Ca2+ and trifluoperazine on the processing of human acetylated low density lipoprotein by non-parenchymal liver cells.FEBS Lett. 1981;132:61–66.

    Article  PubMed  Google Scholar 

  29. Terashita, K, Orimo H, Nakamura T, et al. Calcium metabolism and arteriosclerosis—Part I. The effect of Ca-antagonist on the release of PGI2 from cultured rat aortic smooth muscle cells.J Jpn Atheroscl Soc. 1984;12:851–856.

    Google Scholar 

  30. Schmitz G, Robenek H, Beuck M, et al. Ca++ antagonist and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I. Characterization of cellular lipid metabolism,Arteriosclerosis 1988;8:46–56.

    PubMed  CAS  Google Scholar 

  31. Robenek H, Schmitz G. Ca++ antagonist and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. II. Characterization of intracellular morphologic changes.Arteriosclerosis 1988;8:57–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, Y., Higuchi, N., Emura, S. et al. Quantitative analysis of antiatherosclerotic effect of nifedipine in cholesterol-fed rabbits. Cardiovasc Drug Ther 4 (Suppl 5), 1021–1026 (1990). https://doi.org/10.1007/BF02018311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018311

Key Words

Navigation