Skip to main content
Log in

Antiatherogenic effects of calcium-channel blockers: Possible mechanisms of action

  • Nifedipine and Atherogenesis
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Calcium-channel blockers (Ca blockers), such as nifedipine, verapamil, diltiazem, flunarizine, and their respective derivatives, have been reported to suppress the formation of arterial lesions in animals fed atherogenic diets. The fact that structurally unrelated Ca blockers exert similar antiatherogenic effects may suggest that the drugs act by a calcium-channel-dependent mechanism. However, in cell culture experiments in which putative antiatherosclerotic effects were observed only in the presence of a very high drug concentration (>10 μM), calcium-channel-independent mechanisms are likely. It does not appear that Ca blockers act predominantly by altering coronary risk factors such as arterial pressure or hypercholesterolemia. On the other hand, current evidence is accumulating that Ca blockers may act by suppressing chemotaxis and the proliferation of cells involved in lesion formation. Recent reports indicate that relatively low concentrations (<1 μM) of nifedipine may promote the release of cholesterol from fat-laden smooth cells and macrophages. Controlled clinical trials are needed to determine whether Ca blockers have utility in the prevention of the progression of atherosclerosis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betz E. The effect of calcium antagonists on intimal cell proliferation in atherogenesis.Ann NY Acad Sci 1988;522:399–410.

    Article  PubMed  CAS  Google Scholar 

  • Betz E, Hammerle H, Strohschneider T. Inhibition of smooth muscle cell proliferation and endothelial permeability with flunarizine in vitro and in experimental atheromas.Res Exp Med 1985;185:325–340.

    Article  CAS  Google Scholar 

  • Blumlein SL, Sievers R, Kidd P, Parmley WW. Mechanism of protection from atherosclerosis by verapamil in the cholesterol-fed rabbit.Am J Cardiol 1984;54:884–889.

    Article  PubMed  CAS  Google Scholar 

  • Bossaller C, Habib GB, Yamamoto H, et al. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta.J Clin Invest 1987;79:170–174.

    Article  PubMed  CAS  Google Scholar 

  • Bretherton KN, Day AJ, Skinner SL. Hypertension-accelerated atherogenesis in cholesterol-fed rabbits.Atherosclerosis 1977;27:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Catapano AL, Maggi FM, Cicerano U. The antiatherosclerotic effect of anipamil in cholesterol-fed rabbits.Ann NY Acad Sci 1988;522:519–521.

    Article  Google Scholar 

  • Corsini A, Fumagalli R, Paoletti R. Calcium antagonists and low density lipoproteins metabolism by human fibroblasts and by human hepatoma cell line HEP G2.Pharmac Res Comm 1986;18:1–16.

    Article  CAS  Google Scholar 

  • Daugherty A, Rateri DL, Sehonfeld G, Sobel BE. Inhibition of choleteryl ester deposition in macrophages by calcium entry blockers: An effect dissociable from calcium entry blockade.Br J Pharmacol 1987;91:113–118.

    PubMed  CAS  Google Scholar 

  • Diccianni MB, Cardin AD, Britt AL, et al. Effect of a sustained release formulation of diltiazem on the development of atherosclerosis in cholesterol-fed rabbits.Atherosclerosis 1987;65:199–205.

    Article  PubMed  CAS  Google Scholar 

  • Etingin OR, Hajjar DP. Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit arterial smooth muscle cells.J Clin Invest 1985;75:1554–1558.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein MB, Fiekers J, Fraser, C. An analysis of the mechanisms of local anesthetic inhibition of platelet aggregation and secretion.Pharmacol Exp Ther 1976;215–228.

  • Fronek K. Effect of nisoldipine on diet-induced atherosclerosis in rabbitsAnn NY Acad Sci 1988;522:525–526.

    Article  Google Scholar 

  • Ginsburg R, Davis K, Bristow MR, et al. Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary arteries of cholesterol-fed rabbits.Lab Invest 1983;49:154–158.

    PubMed  CAS  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries.N Engl J Med 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  • Habib JB, Bossaler C, Wells S, et al. Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200110.Circ Res 1986:58:305–309.

    PubMed  CAS  Google Scholar 

  • Handley DA, Van Valen RG, Melden MK, Saunders RN. Suppression of rat carotid lesion development by the calcium channel blocker PN 200-110.Am J Pathol 1986;124:88–93.

    PubMed  CAS  Google Scholar 

  • Haudenschild, Backa. Personal communication.

  • Heistad DD, Armstrong ML. Blood flow through vasa vasorum of coronary arteries in atherosclerotic monkeys.Arteriosclerosis 1986;6:326–331.

    PubMed  CAS  Google Scholar 

  • Henry PD, Calcium antagonists as antiatherogenic agents.Ann NY Acad Sci 1988;522:411–419.

    Article  PubMed  CAS  Google Scholar 

  • Henry PD, Bentley KI. Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine.J Clin Invest 1981;68:1366–1369.

    Article  PubMed  CAS  Google Scholar 

  • Henry PD, Perez JE. Clinical pharmacology of calcium antagonists. In: Conti CR, Brest AN, eds.Cardiac drug therapy. Philadelphia: F.A. Davis, 1984:93–109.

    Google Scholar 

  • Henry PD, Yokoyama M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine. Mediation by a serotonergic mechanism.J Clin Invest 1980;66:306–313.

    Article  PubMed  CAS  Google Scholar 

  • Jackson LJ, Bush RC, Bowyer DE. Inhibitory effect of calcium antagonists on balloon catheter-induced arterial smooth muscle cell proliferation and lesion size.Atherosclerosis 1988;69:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Jones CR, Pasanishi F, Elliott HL, Reid JL. Effects of verapamil and nisoldipine on human platelets: In vivo and in vitro studies.Br J Clin Pharmac 1985;20:191–196.

    CAS  Google Scholar 

  • Lardinois CK, Neuman SL. The effects of antihypertensive agents on serum lipids and lipoproteins.Arch Intern Med 1988;148:1280–1288.

    Article  PubMed  CAS  Google Scholar 

  • Lichtlen PR, Hugenholtz PG, Rafflenbuel W, et al. Retardation of angiographic progression of coronary disease by nifedipine.Lancet 1990;335:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  • Lichtor T, Davis HR, Vesselinovitch D, et al. Suppression of atherogenesis nifedipine in the cholesterol-fed rhesus monkey.App Pathol 1989;7:8–18.

    CAS  Google Scholar 

  • McDonagh PF, Roberts DJ. Prevention of transcoronary macromolecular leakage after ischemia-reperfusion by the calcium entry blocker nisoldipine.Circ Res 1986;58:127–136.

    PubMed  CAS  Google Scholar 

  • McIntyre DE, Shaw AM. Phospholipid-induced human platelet activation: Effects of calcium channel blockers and calcium chelators.Thromb Res 1983;31:833–844.

    Article  PubMed  Google Scholar 

  • Molinari A, Guarneri L, Pacel E, et al. Mouse antithrombotic assay: The effect of Ca++ channel blockers are platelet-independentJ Pharmacol Exp Ther 1987;240:623–627.

    PubMed  CAS  Google Scholar 

  • Moore JB, Fuller BL, Falotico R, Toman EL. Inhibition of rabbit platelet phosphodiesterase activity and aggregation by calcium channel blockers.Thromb Res 1985;40:401–411.

    Article  PubMed  CAS  Google Scholar 

  • Naito M, Kuzuya F, Asai K, et al. Ineffectiveness of Ca2+ antagonists nicardipine and diltiazem on experimental atherosclerosis in cholesterol-fed rabbits.Angiology 1984;35:622–627.

    Article  PubMed  CAS  Google Scholar 

  • Nakao J, Ito H, Ooyama T, et al. Calcium dependency of aortic smooth muscle cell migration induced by 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid.Atherosclerosis 1983;46:309–319.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Sjolund M, Palmberg L et al. The calcium antagonist nifedipine inhibits arterial smooth muscle cell proliferation.Atherosclerosis 1985;58:109–122.

    Article  PubMed  CAS  Google Scholar 

  • Nomoto A, Hirosumi J, Sekiguchi C, et al. Antiatherogenic activity of FR34235 (Nilvadipine) a new potent calcium antagonist.Atherosclerosis 1987;64:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Ohata I, Sakamoto N, Nagano K, Maeno H. Low density lipoprotein-lowering and high density lipoprotein-elevating effects of nicardipine in rats.Biochem. Pharmac 1984;33:2199–2205.

    Article  CAS  Google Scholar 

  • Orekhov AN, Tertov VV, Khashimov KA, et al. Evidence of antiatherosclerotic action of verapamil from direct effects on arterial cells.Am J Cardiol 1987;59:495–496.

    Article  PubMed  CAS  Google Scholar 

  • Pannocchia A, Praloran N, Arduino C, et al. Absence of (−) (3H)desmethoxyverapamil binding sites on human platelets and lack of evidence for voltage-dependent calcium channels.Eur J Pharmacol 1987:142:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Pick R, Chediak J, Glick G, Aspirin inhibits development of coronary atherosclerosis in cynomolgus monkeys (Macaca fascicularis) fed an atherogenic diet.J Clin Invest 1979;63:158–162.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WC. Coronary heart disease: A review of abnormalities observed in the coronary arteries.Cardiovasc Med 1977;2:29–49.

    Google Scholar 

  • Ross R. The pathogenesis of atherosclerosis—an update.N Engl J Med 1986:314:488–500.

    Article  PubMed  CAS  Google Scholar 

  • Rouleau JL, Parmley WW, Stevens J, et al. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits.J Am Coll Cardiol 1983;1:1453–1460.

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Fujiyama Y, Shirai K, Yoshida S. Effect of nifedipine on lipid metabolism is smooth muscle cells. In: Lichtlen PR, ed.Proceedings of the 6th International Adalat Symposium. New therapy of ischemic heart disease and hypertension. Amsterdam: Excerpta Medica, 1986:479–483.

    Google Scholar 

  • Schettler G, Nerem RM, Schmid-Schonbein H, et al. In:Fluid dynamics as a localizing factor of atherosclerosis. Berlin: Springer-Verlag, 1983:1–226.

    Google Scholar 

  • Schmitz G, Robenek H, et al. Ca++ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms.Arteriosclerosis 1988;8:46–56.

    PubMed  CAS  Google Scholar 

  • Stein O, Halperin G, Stein Y. Long-term effects of verapamil on aortic smooth muscle cells cultured in the presence of hypercholesterolemic serum.Arteriosclerosis 1987;7:585–592.

    PubMed  CAS  Google Scholar 

  • Stein O, Leitersdorf E, Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture.Arteriosclerosis 1985;5:35–44.

    PubMed  CAS  Google Scholar 

  • Stender S, Ravn H, Haugegaard M, Kjeldsen K. Effect of verapamil on accumulation of free and esterified cholesterol in the thoracic aorta of cholesterol-fed rabbits.Atherosclerosis 1986:61:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Strickberger SA, Russek LN, Phair RD. Evidence for increased aortic plasma membrane calcium transport caused by experimental atherosclerosis in rabbits.Circ Res 1988;62:75–80.

    PubMed  CAS  Google Scholar 

  • Strohschneider T, Betz E. Densitometric measurement of increased endothelial permeability in arteriosclerotic plaques and inhibition of permeability under the influence of two calcium antagonists.Atherosclerosis 1989;75:135–144.

    Article  PubMed  CAS  Google Scholar 

  • Sugano M, Nakashima Y, Matsushima T, et al. Suppression of atherosclerosis in cholesterol-fed rabbits by diltiazem injection.Arterosclerosis 1986;6:237–241.

    CAS  Google Scholar 

  • Tedgui A, Chiron B, Curmi P, et al. Effect of nicardipine and verapamil on in vitro albumin transport in rabbit thoracic aorta.Arteriosclerosis 1987;7:80–87.

    PubMed  CAS  Google Scholar 

  • Weinstein DB, Heider JG. Antiatherogenic properties of calcium antagonists.Am J Cardiol 1987;59:163B-172B.

    Article  PubMed  CAS  Google Scholar 

  • Willis AL, Nagel B, Churchill V, et al. Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits.Arteriosclerosis 1985;5:250–255.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, P.D. Antiatherogenic effects of calcium-channel blockers: Possible mechanisms of action. Cardiovasc Drug Ther 4 (Suppl 5), 1015–1020 (1990). https://doi.org/10.1007/BF02018310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018310

Key Words

Navigation