Periodica Mathematica Hungarica

, Volume 6, Issue 3, pp 217–228 | Cite as

On differential operators of infinite order

  • P. Soltész


Differential Operator Infinite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. van der Steen,On differential operators of infinite order, Thesis, Delft, 1968.Google Scholar
  2. [2]
    P. C. Sikkema, Function-theoretic researches on differential operators of infinite order, I,Nederl. Akad. Wetensch. Proc. Ser. A 56 (1953), 465–477; II, III, IV,Nederl. Akad. Wetensch. Proc. Ser. A 57 (1954), 176–187, 280–291, 293–305.Google Scholar
  3. [3]
    Yu. F. Korobeînik, Entire analytic solutions of equations of infinite order with polynomial coefficients,Dokl. Akad. Nauk SSSR 157 (1964), 1031–1034 (in Russian).Google Scholar
  4. [4]
    Yu. F. Korobeînik, Some applications of the theory of normally solvable operators to differential operators of infinite order,Mat. Sb. 72 (1967), 3–37 (in Russian).Google Scholar
  5. [5]
    T. Kato,Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.Google Scholar
  6. [6]
    R. P. Boas,Entire functions, Academic Press, New York, 1954.Google Scholar
  7. [7]
    G. V. Iyer, On the space of integral functions V,J. Indian Math. Soc. 24 (1960), 269–278.Google Scholar
  8. [8]
    V. Krishnamurthy, On the continuous endomorphisms in the spaces of certain classes of entire functions,Proc. Nat. Acad. Sci. India Sect. A 26 (1960), 642–655.Google Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • P. Soltész
    • 1
  1. 1.Budapesti Műszaki Egyetem Épitőmérnöki Kar Geotechnikai TanszékBudapestHungary

Personalised recommendations