Skip to main content
Log in

Left ventricular dilatation and failure post-myocardial infarction: Pathophysiology and possible pharmacologic interventions

  • Review Section
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

An important antecedent to the development of late congestive heart failure is left ventricular dilatation and remodeling following myocardial infarction, which occurs in 30–40% of acute anterior transmural infarcts. Dilatation and remodeling commence within the first 24 hours following myocardial infarction and may be steadily progressive over months to years. Both the infarcted and uninfarcted regions of the myocardium are equally involved in the process. The remodeling process comprises left ventricular wall thinning (mainly due to cell slippage), chamber dilatation, and compensatory hypertrophy of the uninfarcted segment of the myocardium. The hypertrophy may initially be physiologic but may ultimately become a pathologic process, and thereby contribute to pump dysfunction. The possible reasons why the ventricualr hypertrophy may ultimately be dysfunctional include alterations in local architecture and their sequelae alone or in concert with local changes in the beta-adrenergic, alpha-adrenergic, or renin angiotensin systems. At the present time, there are encouraging data to suggest that nitroglycerin, or the angiotensin converting enzyme inhibitor captopril, may ameliorate this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Sorlie P, McNamara PM. Prognosis after initial myocardial infarction. The Framingham Study.Am J Cardiol 1979;44:53–59.

    PubMed  Google Scholar 

  2. Serruys PW, Simoons ML, Suryapranata H, et al. Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction.J Am Coll Cardiol 1986;7:729–742.

    PubMed  Google Scholar 

  3. White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinat of survival after recovery from myocardial infarction.Circulation 1987;76:44–51.

    PubMed  Google Scholar 

  4. Klein MD, Herman MV, Gorlin R. A hemodynamic study of left ventricular aneurysm.Circulation 1967;35:614–630.

    PubMed  Google Scholar 

  5. Hutchins GM, Bulkley BH. Infarct expansion versus extension: Two different complications of acute myocardial infarction.am J Cardiol 1978;41:1127–1132.

    PubMed  Google Scholar 

  6. Eaton LW, Weiss JL, Bulkley BH, et al. Regional cardiac dilatation after acute myocardial infarction: Recognition by two-dimensional echocardiography.N Engl J Med 1979;300:57–62.

    PubMed  Google Scholar 

  7. Erlebacher JA, Weiss JL, Eaton LW, et al. Late effects of acute infarct dilation on heart size: A two-dimensional echocardiographic study.Am J Cardiol 1982;49:1120–1126.

    PubMed  Google Scholar 

  8. Meizlisch JL, Berger HJ, Plankey M, et al. Functional left ventricular aneurysm formation after acute transmural myocardial infarction: Incidence, natural history, and prognostic implications.N Engl J Med 1984;311:1001–1006.

    PubMed  Google Scholar 

  9. Mann DL, Foale RA, Gillam LD, et al. Early natural history of regional left ventricular dysfunction after experimental myocardial infarction.Am Heart J 1988;115:538–546.

    PubMed  Google Scholar 

  10. Weisman HF, Healy B. Myocardial infarct expansion, infarct extension, and reinfarction: Pathophysiologic concepts.Progr Cardiovasc Dis 1987;30:73–110.

    Google Scholar 

  11. Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: A study in the rat model.J Am Coll Cardiol 1985;5:1355–1362.

    PubMed  Google Scholar 

  12. Nolan SE, Mannisi JA, Bush DE, et al. Ihcreased afterload aggravates infarct expansion after acute myocardial infarction.J Am Coll Cardiol 1988;12:1318–1325.

    PubMed  Google Scholar 

  13. Hammerman H, Schoen FJ, Braunwald E, Kloner RA. Drug-induced expansion of infarct: Morphologic and functional correlations.Circulation 1984;69:611–617.

    PubMed  Google Scholar 

  14. Hammerman H, Kloner RA, Hale S, et al. Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent, scar formation, and ventricular function.Circulation 1983;68:446–452.

    PubMed  Google Scholar 

  15. Mannisi JA, Weisman HF, Bush DE, et al. Steroid administration after myocardial infarction promotes early infarct expansion: A study in the rat model.J. Clin Invest 1987;79:1431–1439.

    PubMed  Google Scholar 

  16. Cohn JN. Current therapy of the failing heart.Circulation 1988;78:1099–1107.

    PubMed  Google Scholar 

  17. Weisman HF, Bush DE, Mannisi JA, et al. Cellular mechanisms of myocardial infarct expansion.Circulation 1988;78:186–201.

    PubMed  Google Scholar 

  18. Anversa P, Loud AV, Levicky V, Guideri G. Left ventricular failure induced by myocardial infarction. I. Myocyte hypertrophy.Am J Physiol 1985;248:H876–882.

    PubMed  Google Scholar 

  19. Bishop S. Ultrastructure of the myocardium in physiologic and pathologic hypertrophy in experimental animals. In: Alpert NR, eds.Perspectives in cardiovascular research, New York: Raven Press, 1983:127–147.

    Google Scholar 

  20. Wikman-Coffelt J, Parmley WW, Mason DT. The cardiac hypertrophy process: Analyses of factors determining pathological vs. physiological development.Circ Res 1979;45:697–707.

    PubMed  Google Scholar 

  21. Scheuer J, Bhan AK: Brief reviews: Cardiac contractile proteins: Adenosine triphosphate activity and physiological function.Circ Res 1979;45:1–12.

    PubMed  Google Scholar 

  22. Meerson FZ, Zaletayeva TA, Lagutchev SS, Pshennikova MG. Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart.Exp Cell Res 1964;36:568–578.

    PubMed  Google Scholar 

  23. Meerson FZ. The myocardium in hyperfunction, hypertrophy and heart failure.Circ Res 1969;25(Suppl II):1–163.

    Google Scholar 

  24. Anversa P, Loud AV, Giacomelli F, Weiner J. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II: Ultrastructure of myocytes and interstitium.Lab Invest 1978;38:597–609.

    PubMed  Google Scholar 

  25. Page E, Polimeni PI, Zak R, et al. Myofibrillar mass in rat and rabbit heart muscle: Correlation of microchemical and stereological measurements in normal and hypertrophied hearts.Circ Res 1972;30:430–439.

    PubMed  Google Scholar 

  26. Rakusan K, Moravec J, Hatt PY. Regional capillary supply in the normal and hypertrophied rat heart.Microvasc Res 1980;20:319–326.

    PubMed  Google Scholar 

  27. Shipley RA, Shipley LJ, Wearn JT. The capillary supply in normal and hypertrophied hearts of rabbits.J Exp Med 1936;65:29–44.

    Google Scholar 

  28. Weber KT, Janicki JS, Pick R, et al. Collagen in the hypertrophied, pressure-overloaded myocardium.Circulation 1987;75(Suppl I):40–47.

    PubMed  Google Scholar 

  29. Holtz J, Restarff WV, Bard P, Bassenge E. Transmyocardial distribution of myocardial blood flow and of coronary reserve in canine left ventricular hypertrophy.Basic Res Cardiol 1977;72:286–292.

    PubMed  Google Scholar 

  30. Murray PA, Vatner SF. Reduction of maximal coronary vasodilator capacity in conscious dogs with severe right ventricular hypertrophy.Circ Res 1981;48:25–33.

    PubMed  Google Scholar 

  31. Bertrand ME, Lablanche JM, Tilmant PY, et al. Coronary sinus blood flow at rest and during isometric exercise in patients with aortic valve disease: Mechanism of angina pectoris in presence of normal coronary arteries.Am J Cardiol 1981;47:199–205.

    PubMed  Google Scholar 

  32. Nitenberg A, Foult JM, Blanchet F, Zouioueche S. Multifactorial determinants of reduced coronary flow reserve after dipyridamole in dilated cardiomyopathy.Am J Cardiol 1985;55:748–754.

    PubMed  Google Scholar 

  33. Karam R, Wicker P, Sen S, Healy B. Coronary circulation in postinfarction cardiac hypertrophy (abstract).Circulation 1988;78(Suppl II):170.

    Google Scholar 

  34. Katz AM. The myocardium in congestive heart failure.Am J Cardiol 1989;63:12A-16A.

    PubMed  Google Scholar 

  35. Anversa P, Olivetti G, Melissari M, Loud AV. Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat.J Mol Cell Cardiol 1980;12:781–795.

    PubMed  Google Scholar 

  36. Page E, McAllister LP. Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxine-stimulated hearts.Am J Cardiol 1973;31:172–181.

    PubMed  Google Scholar 

  37. Pool PE, Spann JF Jr, Buccino RA et al. Myocardial high energy phosphate stores in cardiac hypertrophy and heart failure.Circ Res 1967;21:365–373.

    Google Scholar 

  38. Bashore TM, Magorien DJ, Letterio J, et al. Histologic and biochemical correlates of left ventricular chamber dynamics in man.J Am Coll Cardiol 1987;9:734–742.

    PubMed  Google Scholar 

  39. Bristow MR, Kantrowitz NE, Ginsburg R, Fowler MB. Beta-adrenergic function in heart muscle disease and heart failure.J Mol Cell Cardiol 1985;17(Suppl 2):41–52.

    PubMed  Google Scholar 

  40. Rodbell M, Lad PM, Nielsen TB, et al. The structure of adenylate cyclase systems.Adv Cyclic Nucleotide Res 1981;14:3–14.

    PubMed  Google Scholar 

  41. Yatani A, Imoto Y, Codina J, et al. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridinesensitive Ca2+ channels.J Biol Chem 1988;263:9887–9895.

    PubMed  Google Scholar 

  42. Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure.Am J Cardiol 1978;41:233–243.

    PubMed  Google Scholar 

  43. Fowler MB, Laser JA, Hopkins GL, et al. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart. Progressive receptor down-regulation and subsensitivity to agonist response.Circulation 1986;74:1290–1302.

    PubMed  Google Scholar 

  44. Vatner DE, Vatner SF, Fuji AM, Homcy CJ. Loss of high affinity cardiac beta-adrenergic receptors in dogs with heart failure.J Clin Invest 1985;76:2259–2264.

    PubMed  Google Scholar 

  45. Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure overload left ventricular failure.J Clin Invest 1988;81:420–424.

    PubMed  Google Scholar 

  46. Kessler PD, Cates AE, Van Dop C, Feldman AM. Decreased bioactivity of the guanine nucleotide-binding protein that stimultes adenylate cyclase in hearts from cardiomyopathic syrian hamsters.J Clin Invest 1989;84:244–252.

    PubMed  Google Scholar 

  47. Horn EM, Corwin SJ, Steinberg SF, et al. Reduced lymphocyte stimulatory guanine nucleotide regulatory protein and beta-adrenergic receptors in congestive heart failure and reversal with angiotensin converting enzyme inhibitor therapy.Circulation 1988;78:1373–1379.

    PubMed  Google Scholar 

  48. Kaziro Y, Itoh H, Kozasa T, et al. Structures of the genes coding for G-protein alpha subunits from mammalian yeast cells.Cold Spring Harbor Symposia on Quantitative Biology. 1988;53–LIII:209–220.

    Google Scholar 

  49. Ferrans VJ, Hibbs RG, Walsh JJ, Burch GE. Histochemical and electron microscopical studies on the cardiac necroses produced by sympathomimetic agents.Ann NY Acad Sci 1969;156:309–332.

    PubMed  Google Scholar 

  50. Morgan HE, Gordon EE, Kira Y, et al. Biochemical correlates of myocardial hypertrophy.The Physiologist 1985;28:18–27.

    PubMed  Google Scholar 

  51. Morgan HE, Chua BHL, Siehl D, et al. Mechanical factors affecting protein turnover in isolated rabbit hearts.Fed Proc 1986;45:2563–2567.

    PubMed  Google Scholar 

  52. Lee HR, Henderson SA, Reynolds R, et al. Alpha1 adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells: Effects on myosin light chain-2 gene expression.J Biol Chem 1988;263:1–7.

    PubMed  Google Scholar 

  53. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha1 adrenergic response.J Clin Invest 1983;72:732–738.

    PubMed  Google Scholar 

  54. Meidell RS, Sen A, Henderson SA, et al. Alpha1 adrenergic stimulation of rat myocardial cells increases protein synthesis.Am J Physiol 1986;251:1076–1084.

    Google Scholar 

  55. Dunnmon PM, Henderson SA, Sen A, et al. Phorbol esters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells.J Molec Cell Cardiol: in press.

  56. Dunnmon PM. Unpublished observations.

  57. Breitbart RE, Adreadis A, Nadal-Ginard B. Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes.Ann Rev Biochem 1987;56:467–495.

    PubMed  Google Scholar 

  58. Re RN. Cellular biology of the renin-angiotensin systems.Arch Intern Med 1984;144:2037–2047.

    PubMed  Google Scholar 

  59. Dzau VJ, Re RN. Evidence of the existence of renin in the heart.Circulation 1987;75(Suppl I):134–136.

    Google Scholar 

  60. Dzau VJ. Circulating versus local renin-angiotensin system in cardiovascular homeostasis.Circulation 1988;77(Suppl I):I4-I13.

    PubMed  Google Scholar 

  61. Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology.Am J Cardiol 1987;59:59A-65A.

    PubMed  Google Scholar 

  62. Hori M, Iwai K, Ikawura K, et al. Angiotensin II stimulates protein synthesis in neonatal rat cardiomyocytes through enhanced Na+/H+ exchange (abstract).Circulation 1989;80(Suppl II):II450.

    Google Scholar 

  63. Nakamura M, Jackson EK, Inagami T. Beta-adrenoreceptor-mediated release of angiotensin-II from mesenteric arteries.Am J Physiol. 1986;250:H144-H148.

    PubMed  Google Scholar 

  64. Katoh Y, Komura I, Shibasaki Y, et al. Angiotensin II induces hypertrophy and oncogene expression in cultured rat heart myocytes (abstract).Circulation 1989;80(Suppl II):II450.

    Google Scholar 

  65. Naftilan AJ, Pratt RE, Eldridge CS, et al. Angiotensin II inducesc-fos expression in smooth muscle via transcription control.Hypertension 1989;13:706–711.

    PubMed  Google Scholar 

  66. Neyses L, Vetter H, Sukhatme VP, Williams RS. Angiotensin II induces expression of the early growth response gene 1 in isolated adult cardiomyotyces (abstract).Circulation 1989;80(Suppl II):II450.

    Google Scholar 

  67. Naftilan AJ, Gilliland GK, Eldridge CS, et al. Induction of the protooncogeneC-jun by angiotensin-II (abstract).Circulation 1989;80(Suppl II):II459.

    Google Scholar 

  68. Jugdutt BI. Myocardial salvage by intravenous nitroglycerin in conscious dogs: Loss of beneficial effect with marked nitroglycerin-induced hypotension.Circulation 1983;68:673–684.

    PubMed  Google Scholar 

  69. Jugdutt BI. Delayed effects of early infarct-limiting therapies on healing after myocardial infarction.Circulation 1985;72:907–914.

    PubMed  Google Scholar 

  70. Jugdutt BI, Sussex BA, Warnica JW, Rossall RE. Persistent reduction in left ventricular asynergy in patients with acute myocardial infarction by intravenous nitroglycerin.Circulation 1983;68:1264–1273.

    PubMed  Google Scholar 

  71. Jugdutt BI, Amy RWM. Healing after myocardial infarction in the dog: Changes in infarct hydroxyproline and topography.J Am Coll Cardiol 1986;7:91–102.

    PubMed  Google Scholar 

  72. Jugdutt BI, Warnica JW. Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: Effect of timing, dosage infarct location.Circulation 1988;78:906–919.

    PubMed  Google Scholar 

  73. Flaherty JT, Becker LC, Bulkley BH, et al. A randomized prospective trial of intravenous nitroglycerin in patients with acute myocardial infarction.Circulation 1983;68:576–588.

    PubMed  Google Scholar 

  74. Jaffe AS, Geltman EM, Tiefenbrunn AJ, et al. Reduction of infarct size in patients with inferior infarction with intravenous glyceryl trinitrate. A randomized study.Br Heart J 1983;49:452–460.

    PubMed  Google Scholar 

  75. Yusuf S, MacMahon S, Collins R, Peto R. Effect of intravenous nitrates on mortality in acute myocardial infarction: An overview of the randomized trials.Lancet 1988;1:1088–1091.

    PubMed  Google Scholar 

  76. Ertl G, Kloner RA, Alexander RW, Braunwald E. Limitation of experimental infarct size by an angiotensin converting enzyme inhibitor.Circulation 1982;65:40–48.

    PubMed  Google Scholar 

  77. Westlin W, Mullane K. Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals?Circulation 1988;77(Suppl I):30–39.

    Google Scholar 

  78. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat.Circ Res 1985;57:84–95.

    PubMed  Google Scholar 

  79. Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction: Effects on systolic function.Circ Res 1981;49:618–626.

    PubMed  Google Scholar 

  80. Pfeffer JM, Pfeffer MA, Braunwald E. Hemodynamic benefits and prolonged survival with long-term captopril therapy in rats with myocardial infarction and heart failure.Circulation 1987;75(Suppl I):149–155.

    Google Scholar 

  81. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experiemntal infarction: Beneficial effects of long-term therapy with captopril.Circulation 1985;72:406–412.

    PubMed  Google Scholar 

  82. Pfeffer MA, Pfeffer JM. Ventricular enlargement and reduced survival after myocardial infarction.Circulation 1987;75(Suppl IV):93–97.

    Google Scholar 

  83. Lamas G, Pfeffer MA. Increased left ventricular volume following myocardial infarction in man.Am Heart J 1986;111:30–35.

    PubMed  Google Scholar 

  84. Pfeffer MA, Lamas GA, Vaughan DE, et al. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction.N Engl J Med 1988;319:80–86.

    PubMed  Google Scholar 

  85. Warren SE, Royal HD, Markis JE, et al. Time course of left ventricular dilation after myocardial infarction: Influence of infarct-related artery and success of coronary thrombolysis.J Am Coll Cardiol 1988;11:12–19.

    PubMed  Google Scholar 

  86. Jeremy RW, Hackworthy RA, Bautovitch G, et al. Infarct artery perfusion and changes in left ventricular volume in the month after acute myocardial infarction.J Am Coll Cardiol 1987;9:989–995.

    PubMed  Google Scholar 

  87. Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival. Should the paradigm be expandel?Circulation 1989;79:441–444.

    PubMed  Google Scholar 

  88. Sharpe N, Murphy J, Smith H, Hannan S. Treatment of patients with symptomless left ventricular dysfunction after myocardial infarction.Lancet 1988;1:255–259.

    PubMed  Google Scholar 

  89. Gorlin R, Treatment of congestive heart failure: Where are we going?Circulation 1987;75(Suppl IV):108–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firth, B.G., Dunnmon, P.M. Left ventricular dilatation and failure post-myocardial infarction: Pathophysiology and possible pharmacologic interventions. Cardiovasc Drug Ther 4, 1363–1374 (1990). https://doi.org/10.1007/BF02018264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018264

Key words

Navigation