Periodica Mathematica Hungarica

, Volume 9, Issue 3, pp 205–230 | Cite as

Embedding theorems for graphs establishing negative partition relations

  • P. Erdős
  • A. Hajnal

AMS (MOS) subject classifications (1970)

Primary 04A60 Secondary 05C40 

Key words and phrases

Partition relations graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. J. Devlin andH. Johnsbråten,The Souslin problem, Springer Verlag, 1974, Berlin-Heidelberg-New York.MR 52 # 5416Google Scholar
  2. [2]
    P. Erdős, F. Galvin andA. Hajnal, On set-systems having large chromatic number and not containing prescribed subsystems,Colloquia Math. Soc. János Bolyai, 10. Infinite and finite sets (Keszthely Hungary, 1973), North-Holland, 1975, Amsterdam, 425–513.MR 53#2727Google Scholar
  3. [3]
    P. Erdős andA. Hajnal, Unsolved problems in set theory,Proc. Sympos. Pure Math., 13,part 1, Amer. Math. Soc., Providence, R. I., 1971, 17–48.MR 43#6101Google Scholar
  4. [4]
    P. Erdős andA. Hajnal, Unsolved and solved problems in set theory,Proceedings of the Tarski Symposium (Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R. I., 1974, 269–287.MR 50#9590Google Scholar
  5. [5]
    P. Erdős, A. Hajnal, A. Máté andR. Rado,Partition relations for cardinals. (To be published by the Hungarian Academy of Sciences)Google Scholar
  6. [6]
    P. Erdős, A. Hajnal andR. Rado, Partition relations for cardinal numbers,Acta Math. Acad. Sci. Hungar. 16 (1965), 93–196.MR 34#2475.Google Scholar
  7. [7]
    W. P. Hanf, Incompactness in languages with infinitely long expressions,Fund. Math. 53 (1963–64), 309–324.MR 28#3943Google Scholar
  8. [8]
    S. Shelah, Coloring without triangles and partition relations,Israel J. Math. 20 (1975), 1–12.Zbl. 311#05112Google Scholar
  9. [9]
    R. M. Solovay andS. Tennenbaum, Iterated Cohen extensions and Souslin's problem,Ann. of Math. 94 (1971), 201–245.MR 45#3212Google Scholar

Copyright information

© Akadémiai Kiadó 1978

Authors and Affiliations

  • P. Erdős
    • 1
  • A. Hajnal
    • 1
  1. 1.Department of MathematicsUniversity of CalgaryCalgaryCanada

Personalised recommendations