Oligosaccharides and glycoconjugates in human milk: Their role in host defense



Human milk contains an extremely high concentration of complex carbohydrates, especially oligosaccharides, the third most abundant solid constituent of human milk. The value of human milk nutrients to infants is now widely recognized, and a role for the secretory antibodies of human milk in the defense of the infant is generally accepted. However, a function for nonimmunoglobulin milk protective factors, many of them non-nutrients, in providing for the defense of the nursling is only now beginning to be appreciated. Prominent among postulated defense agents are the milk oligosaccharides and glycoconjugates. Their complex carbohydrate structures are thought to be assembled by the same enzymes, the glycosyltransferases, that synthesize the cell surface glycoconjugates often used as receptors by pathogens. Some milk oligosaccharides and glycoconjugates may protect the nursing infant by acting as receptor homologs, inhibiting the binding of enteropathogens to their host receptors. Ongoing research is linking specific carbohydrate structures with protection against specific pathogens. Current information regarding the composition, protective activities, and protective mechanisms of the milk glycolipids, glycoproteins, mucins, glycosaminoglycans, and oligosaccharides is reviewed.

Key words

Human milk oligosaccharides glycosaminoglycans mucins glycolipids disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Svennerholm (1964). The gangliosides (review).J. Lipid Res. 5:143–155.Google Scholar
  2. 2.
    C. Grulee, H. Sanford, and H. Schwartz (1935). Breast and artificially fed infants; study of the age incidence in the morbidity and mortality in 20,000 cases.JAMA 104:1986–1988.Google Scholar
  3. 3.
    R. G. Feachem and M. A. Koblinsky (1984). Interventions for the control of diarrhoeal diseases among young children: promotion of breast-feeding.Bull. WHO 62:271–291.PubMedGoogle Scholar
  4. 4.
    P. W. Howie, J. S. Forsyth, S. A. Ogston, A. Clark, and C. du V Florey (1990). Protective effect of breast feeding against infection.Br. Med. J. 300:11–16.Google Scholar
  5. 5.
    D. W. Teele, J. O. Klein, B. Rosner, and Greater Boston Otitis Media Study Group. (1989). Epidemiology of otitis media during the first seven years of life in children in Greater Boston: A prospective, cohort study.J. Infect. Dis. 160:83–94PubMedGoogle Scholar
  6. 6.
    E. Telemo and L. A. Hanson (1996). Antibodies in milk.J. Mam. Gland Biol. Neoplasia 1:243–249.Google Scholar
  7. 7.
    K. A. Ryan-Poirier and Y. Kawaoka (1993). α2-Macroglobulin is the major neutralizing inhibitor of influenza A virus in pig serum.Virology 193:974–976.PubMedGoogle Scholar
  8. 8.
    B. S. McLean and I. H. Holmes (1981). Effects of antibodies, trypsin, and trypsin inhibitors on susceptibility of neonates to rotavirus infection.J. Clin. Microbiol. 13:22–29.PubMedGoogle Scholar
  9. 9.
    C. E. Isaacs, R. E. Litov, and H. Thormar (1995). Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk.J. Nutr. Biochem. 6:362–366.PubMedGoogle Scholar
  10. 10.
    J. K. Welsh, M. Arsenakis, R. J. Coelen, and J. T. May (1979). Effect of antiviral lipids, heat, and freezing on the activity of viruses in human milk.J. Infect. Dis. 140:322–328.PubMedGoogle Scholar
  11. 11.
    L. Rohrer, K. H. Winterhalter, J. Eckert, and P. Kohler (1986). Killing ofGiardia lamblia by human milk is mediated by unsaturated fatty acids.Antimicrob. Agents Chemother. 30:254–257.PubMedGoogle Scholar
  12. 12.
    A. Bezkorovainy, D. Grohlich, and J. H. Nichols (1979). Isolation of a glycopolypeptide fraction withLactobacillus bifidus subspeciespennsylvanicus growth-promoting activity from whole human milk casein.Am. J. Clin. Nutr. 32:1428–1432.PubMedGoogle Scholar
  13. 13.
    B. Reiter and J. H. Brock (1975). Inhibition ofEscherichia coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain ofE. coli of the serotype O 111.Immunology 28:71–82.PubMedGoogle Scholar
  14. 14.
    J. G. Banks and H. S. Tranter (1985). Lysozyme. In B. Reiter (ed.),Antimicrobial Systems in Milk, Part 2, International Dairy Federation, University of Bath, England, pp. 39–48.Google Scholar
  15. 15.
    L. Bjorck (1985). The lactoperioxidase system. In B. Reiter (ed.),Antimicrobial Systems in Milk, Part 2, International Dairy Federation, University of Bath, England, pp. 18–30.Google Scholar
  16. 16.
    J. H. Nuijens, P. H. C. van Berkel, and F. L. Schanbacher (1996). Structure and biological actions of Lactoferrin.J. Mam. Gland Biol. Neoplasia 1:285–295.Google Scholar
  17. 17.
    M. C. Harmsen, P. J. Swart, M.-P. de Bethune, R. Pauwels, E. De Clercq, H. The, and D. K. F. Mekjer (1995). Antiviral effects of plasma and milk proteins: Lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replicationin vitro.J. Infect. Dis. 172:380–388.PubMedGoogle Scholar
  18. 18.
    K. Yamauchi, M. Tomita, T. J. Giehl, and R. T. D. Ellison (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment.Infect. Immun. 61:719–728.PubMedGoogle Scholar
  19. 19.
    D. S. Newburg and S. H. Neubauer (1995). Carbohydrates in milk. In R. G. Jensen (ed.),Handbook of Milk Composition, Academic Press, San Diego, pp. 273–349.Google Scholar
  20. 20.
    T. W. Keenan and S. Patton (1995). The structure of milk: Implications for sampling and storage. In R. G. Jensen (ed.),Handbook of Milk Composition, Academic Press, San Diego, pp. 5–50.Google Scholar
  21. 21.
    A. Laegreid, A.-B. Kolsto Otnaess, and J. Fuglesang (1986). Human and bovine milk: Comparison of ganglioside composition and enterotoxin-inhibitory activity.Pediatr. Res. 20:416–421.PubMedGoogle Scholar
  22. 22.
    K. Takamizawa, M. Iwamori, M. Mutai, and Y. Nagai (1986). Selective changes in gangliosides of human milk during lactation: a molecular indicator for the period of lactation.Biochim. Biophys. Acta 879:73–77.PubMedGoogle Scholar
  23. 23.
    J.-F. Bouhours and D. Bouhours (1979). Galactosylceramide is the major cerebroside of human milk fat globule membrane.Biochem. Biophys. Res. Commun. 88:1217–1222.PubMedGoogle Scholar
  24. 24.
    D. S. Newburg and P. Chaturvedi (1992). Neutral glycolipids of human and bovine milk.Lipids 27:923–927.PubMedGoogle Scholar
  25. 25.
    A.-B. Kolsto Otnaess, A. Laegreid, and K. Ertresvag (1983). Inhibition of enterotoxin fromEscherichia coli andVibrio cholerae by gangliosides from human milk.Infect. Immun. 40:563–569.PubMedGoogle Scholar
  26. 26.
    A. Laegreid and A.-B. Kolsto Otnaess (1987). Trace amounts of ganglioside GM1 in human milk inhibit enterotoxins fromVibrio cholerae andEscherichia coli.Life Sci. 40:55–62.PubMedGoogle Scholar
  27. 27.
    G. Ruiz-Palacios, J. Torres, N. Torres, E. Escamilla, B. Ruiz-Palacios, and J. Tamayo (1984). Cholera-like enterotoxin produced byCampylobacter jejuni heat labile enterotoxin.Infect. Immun. 43:314–319.PubMedGoogle Scholar
  28. 28.
    D. S. Newburg, S. Ashkenazi, and T. G. Cleary (1992). Human milk contains the Shiga toxin and Shiga-like toxin receptor glycolipid, Gb3.J. Infect. Dis. 166:832–836.PubMedGoogle Scholar
  29. 29.
    B. J. Stoll, J. Holmgren, P. K. Bardhan, I. Huq, W. B. Greenough, 3rd, P. Fredman, and L. Svennerholm (1980). Binding of intraluminal toxin in cholera: Trial of GM1 ganglioside charcoal.Lancet 2:888–891.PubMedGoogle Scholar
  30. 30.
    R. G. Jensen, B. Blanc, and S. Patton (1995). Particulate constituents in human and bovine milks. In R. G. Jensen (ed.),Handbook of Milk Composition, Academic Press, San Diego, pp. 50–51.Google Scholar
  31. 31.
    M. Polonovsky and A. Lespagnol (1933). Nouvelles acquisitions sur les composés glucidiques du lait de femme.Bulletin de la Societe de Chimie Biologique 15:320–349.Google Scholar
  32. 32.
    J. Montreuil and S. Mullet (1960). Étude des variations des constituants glucidiques du lait de femme au cours de la lactation.Bulletin de la Societe de Chimie Biologique 42:365–377.PubMedGoogle Scholar
  33. 33.
    D. Viverge, L. Grimmonprez, G. Cassanas, L. Bardet, and M. Solere (1990). Variations in oligosaccharides and lactose in human milk during the first week of lactation.J. Pediatr. Gastroenterol. Nutr. 11:361–364.PubMedGoogle Scholar
  34. 34.
    G. V. Coppa, O. Gabrielli, P. Pierani, C. Catassi, A. Carlucci, and P. L. Giorgi (1993). Changes in carbohydrate composition in human milk over 4 months of lactation.Pediatrics 91:637–641.PubMedGoogle Scholar
  35. 35.
    B. Stahl, S. Thurl, J. Zeng, M. Karas, F. Hillenkamp, M. Steup, and G. Sawatzki (1994). Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry.Anal. Biochem. 223:218–226.PubMedGoogle Scholar
  36. 36.
    B. Andersson, O. Porras, L. A. Hanson, T. Lagergard, and C. Svanborg-Eden (1986). Inhibition of attachment ofStreptococcus pneumoniae andHaemophilus influenzae by human milk and receptor oligosaccharides.J. Infect. Dis. 153:232–237.PubMedGoogle Scholar
  37. 37.
    A. Cravioto, A. Tello, H. Villafan, J. Ruiz, S. del Vedovo, and J.-R. Neeser (1991). Inhibition of localized adhesion of enteropathogenicEscherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk.J. Infect. Dis. 163:1247–1255.PubMedGoogle Scholar
  38. 38.
    L. E. Cervantes, D. S. Newburg, and G. M. Ruiz-Palacios (1995). α 1–2 Fucosylated chains (H-2 and Lewisb) are the main human milk receptor analogs forCampylobacter. Pediatr. Res. 37:171A.Google Scholar
  39. 39.
    T. G. Cleary, J. P. Chambers, and L. K. Pickering (1983). Protection of suckling mice from heat-stable enterotoxin ofEscherichia coli by human milk.J. Infect. Dis. 148:1114–1119.PubMedGoogle Scholar
  40. 40.
    D. S. Newburg, L. K. Pickering, R. H. McCluer, and T. G. Cleary (1990). Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin ofEscherichia coli.J. Infect. Dis. 162:1075–1080.PubMedGoogle Scholar
  41. 41.
    J. K. Crane, S. S. Azar, A. Stam, and D. S. Newburg (1994). Oligosaccharides from human milk block binding and activity of theEscherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells.J. Nutr. 124:2358–2364.Google Scholar
  42. 42.
    D. S. Newburg, P. Chaturvedi, R. Van, T. G. Cleary, and L. K. Pickering (1992). Isolation of the human milk oligosaccharide which protects mice from heat-stable enterotoxin ofE. coli. Pediatr. Res. 31:172A.Google Scholar
  43. 43.
    G. Y. Wiederschain and D. S. Newburg (1995). Human milk fucosyltransferase and α-L-fucosidase activities change during the course of lactation.J. Nutr. Biochem. 6:582–587.Google Scholar
  44. 44.
    D. S. Newburg, P. Chaturvedi, C. D. Warren, S. Lui, G. M. Ruiz-Palacios, and L. K. Pickering (1996). Human milk oligosaccharide profiles.FASEB J. 10:553A.Google Scholar
  45. 45.
    A. Sanchez-Pozo, J. Lopez, M. L. Pita, A. Izquierdo, E. Guerrero, F. Sanchez-Medina, A. Martinez Valverde, and A. Gil (1986). Changes in the protein fractions of human milk during lactation.Ann. Nutr. Metabol. 30:15–20.Google Scholar
  46. 46.
    P. Jolles and A. M. Fiat (1979). The carbohydrate portions of milk glycoproteins.J. Dairy Res. 46:187–191.PubMedGoogle Scholar
  47. 47.
    T. Saito, T. Itoh, and S. Adachi (1988). Chemical structure of neutral sugar chains isolated from human mature milk κ-casein.Biochim. Biophys. Acta 964:213–220.PubMedGoogle Scholar
  48. 48.
    A. Kobata (1977). Milk glycoproteins and oligosaccharides. In M. I. Horowitz and W. Pigman (eds.),Mammalian Glycoproteins and Glycolipids (Vol. I), Academic Press, New York, pp. 423–440.Google Scholar
  49. 49.
    G. Aniansson, B. Andersson, R. Lindstedt, and C. Svanborg (1990). Anti-adhesive activity of human casein againstStreptococcus pneumoniae andHaemophilus influenzae.Microb. Pathog. 8:315–323.PubMedGoogle Scholar
  50. 50.
    S. Ashkenazi, D. S. Newburg, and T. G. Cleary (1991). The effect of human milk on the adherence of enterohemorrhagicE. coli to rabbit intestinal cells.Adv. Exp. Med. Biol. 310:173–177.PubMedGoogle Scholar
  51. 51.
    M. K. Shimizu, K. Yamauchi, Y. Miyauchi, T. Sakurai, K. Tokugawa, and R. A. J. McIlhinney (1986). High-M r glycoprotein profiles in human milk serum and fat-globule membrane.Biochem. J. 233:725–730.PubMedGoogle Scholar
  52. 52.
    J. J. Ho, B. Siddiki, and Y. S. Kim (1995). Association of sialyl-Lewis(a) and sialyl-Lewis(x) with MUC-1 apomucin in a pancreatic cancer cell line.Cancer Res. 55:3659–3663.PubMedGoogle Scholar
  53. 53.
    G. Parry, J. Li, J. Stubbs, M. J. Bissell, C. Schmidhauser, A. P. Spicer, and S. J. Gendler (1992). Studies of Muc-1 mucin expression and polarity in the mouse mammary gland demonstrate developmental regulation of Muc-1 glycosylation and establish the hormonal basis for mRNA expression.J. Cell Sci. 101:191–199.PubMedGoogle Scholar
  54. 54.
    W. Buchheim, U. Welsch, G. E. Huston, and S. Patton (1988). Glycoprotein filament removal from human milk fat globules by heat treatment.Pediatrics 81:141–146.PubMedGoogle Scholar
  55. 55.
    S. Patton, G. E. Huston, R. Jenness, and Y. Vaucher (1989). Differences between individuals in high-molecular weight glycoproteins from mammary epithelia of several species.Biochim. Biophys. Acta 980:333–338.PubMedGoogle Scholar
  56. 56.
    R. H. Yolken, J. A. Peterson, S. L. Vonderfecht, E. T. Fouts, K. Midthun, and D. S. Newburg (1992). Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis.J. Clin. Invest. 90:1984–1991.PubMedGoogle Scholar
  57. 57.
    H. Schroten, F. G. Hanisch, R. Plogmann, J. Hacker, G. Uhlenbruck, R. Nobis-Bosch, and V. Wahn (1992). Inhibition of adhesion of S-fimbriatedEscherichia coli to buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction.Infect. Immun. 60:2893–2899.PubMedGoogle Scholar
  58. 58.
    M. Shimizu, N. Uryu, and K. Yamauchi (1981). Presence of heparan sulfate in the fat globule membrane of bovine and human milk.Agric. Biol. Chem. 45:741–745.Google Scholar
  59. 59.
    D. S. Newburg, R. J. Linhardt, S. A. Ampofo, and R. H. Yolken (1995). Human milk glycosaminoglycans inhibit HIV glycoprotein gp120 binding to its host cell CD4 receptor.J. Nutr. 125:419–424.PubMedGoogle Scholar
  60. 60.
    D. S. Newburg, R. P. Viscidi, A. Ruff, and R. H. Yolken (1992). A human milk factor inhibits binding of human immuno-deficiency virus to the CD4 receptor.Pediatr. Res. 31:22–28.PubMedGoogle Scholar
  61. 61.
    M. McClure, J. Moore, D. Blanc, P. Scotting, G. Cook, R. Keynes, J. Weber, D. Davies, and R. Weiss (1992). Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infectionin vitro.AIDS Res. Hum. Retroviruses 8:19–26.PubMedGoogle Scholar
  62. 62.
    A. Laegreid, A.-B. Kolsto Otnaess, I. Orstavik, and K. H. Carlsen (1986). Neutralizing activity in human milk fractions against respiratory syncytial virus.Acta Paediatr. Scand. 75:696–701.PubMedGoogle Scholar
  63. 63.
    D. M. Lambert (1988). Role of oligosaccharides in the structure and function of respiratory syncytial virus glycoproteins.Virology 164:458–466.PubMedGoogle Scholar
  64. 64.
    J.-F. Bouhours and D. Bouhours (1979). Galactosylceramide is the major cerebroside of human milk fat globule membrane.Biochem. Biophys. Res. Commun. 88:1217–1222.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  1. 1.Department of BiochemistryShriver Center for Mental RetardationWaltham
  2. 2.Harvard Medical SchoolBoston

Personalised recommendations