Milk-borne prolactin and neonatal development

  • Lorie A. Ellis
  • Andrea M. Mastro
  • Mary Frances Picciano


Milk is primarily regarded as a food furnishing essential nutrients for infant growth and development, but milk can also serve as a vehicle for mother to neonate transfer of molecules that regulate development. A wide array of biologically active compounds such as hormones, cytokines and enzymes are present in milk, especially early milk. The premise that prolactin (PRL) in milk is an important and possibly essential developmental factor for the newborn is explored. Both PRL and structurally modified isoforms are abundant in early milk and gradually diminish with the progression of lactation. Milk PRL is absorbed and biologically active in the neonate. Assays of PRL variants, experimental paradigms to test them as developmental regulators and the body of evidence supporting the hypothesis that milk PRL regulates differentiation and maturation of neonatal neuroendocrine, reproductive, and immune systems is presented.

Key words

Milk prolactin neonatal development immunity neuroendocrine reproduction pituitary 



Cluster of differentiation


glycosylated prolactin


intraepithelial lymphocytes


polymerase chain reaction




prolactin receptor




cytotoxic T lymphocytes


T-helper lymphocytes


tuberoinfundibular dopaminergic


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Grosvenor, M. F. Picciano, and C. R. Baumrucker (1992). Hormones and growth factors in milk.Endocrine Rev. 14:710–728.Google Scholar
  2. 2.
    M. Peaker and M. C. Neville (1991). Hormones in milk: Chemical signals to the offspring?J. Endocrinol. 131:1–3.Google Scholar
  3. 3.
    O. Koldovsky (1996). The potential physiological significance of milk-borne hormonally active substances for the neonate.J. Mam. Gland Biol. Neoplasia 1(3) 317–323.Google Scholar
  4. 4.
    L. S. Frawley and T. E. Porter (1993). Milk factors as developmental regulators: the case for a mammotrophe differentiating peptide.Endocrine J. 1:241–246.Google Scholar
  5. 5.
    O. Riddle, R. W. Bates, and S. W. Dykshorn (1933). The preparation, identification and assay of prolactin- a hormone of the anterior pituitary.Am. J. Physiol. 105:191–216.Google Scholar
  6. 6.
    V. L. de Vlamming (1979). Actions of prolactin among the vertebrates. In E. J. Barrington (ed.),Hormones and Evolution, Academic Press, New York.Google Scholar
  7. 7.
    Y. N. Sinha (1995). Structural variants of prolactin: Occurrence and physiological significance.Endocrine Rev. 16:354–369.Google Scholar
  8. 8.
    R. R. Gala, I. A. Forsyth, and A. Turvey (1980). Milk prolactin is biologically active.Life Sci. 26:987–993.PubMedGoogle Scholar
  9. 9.
    Y. Taketani and M. Mizuno (1985). Studies on prolactin in human milk.Endocrinol. Japan 32:837–844.Google Scholar
  10. 10.
    B. Kacsoh, Z. Veress, B. E. Toth, L. M. Avery, and C. E. Grosvenor (1993). Bioactive and immunoreactive variants of prolactin in milk and serum of lactating rats and their pups.J. Endocrinol. 138:243–257.PubMedGoogle Scholar
  11. 11.
    L. A. Ellis and M. F. Picciano (1995). Bioactive and immunoreactive prolactin variants in human milk.Endocrinology 136:2711–2720.PubMedGoogle Scholar
  12. 12.
    M. Ollivier-Bousquet, G. Kann, and G. Durand (1993). Prolactin transit through mammary epithelial cells and appearance in milk.Endocrine Reg. 27:115–124.Google Scholar
  13. 13.
    A. Kurtz, L. A. Bristol, B. E. Toth, E. Lazar-Wesley, L. Takacs, and B. Kacsoh (1993). Mammary epithelial cells of lactating rats express prolactin messenger ribonucleic acid.Biol. Reprod. 48:1095–1103.PubMedGoogle Scholar
  14. 14.
    C. E. Grosvenor, B. E. Toth, and B. Kacsoh (1992). Importance of milk prolactin (PRL) in the ontogeny of lactotrophe function in the rat. In M. F. Picciano and B. Lonnerdal (eds.),Mechanisms Regulating Lactation and Infant Nutrient Utilization, Wiley-Liss, New York, pp. 309–335.Google Scholar
  15. 15.
    L. J. Heffner, E. Markoff, R. W. Yuan, and D. W. Lee (1995). Glycosylated human prolactin: Detection by immunoblotting of biological fluids is confounded by antisera crossreactivity with immunoglobulins.Biochem. Biophys. Res. Comm. 212:48–55.PubMedGoogle Scholar
  16. 16.
    U. J. Lewis, R. N. P. Singh, Y. N. Sinha, and W. P. Vanderlaan (1985). Glycosylated human prolactin.Endocrinology 116:359–363.PubMedGoogle Scholar
  17. 17.
    F. Bollengier, R. Hooghe, B. Velkeniers, A. Mahler, L. Vanhaelst, and L. Hooghe-Peters (1991). Further characterization of rat 26,000 prolactin as a glycoprotein with essentially O-linked carbohydrate chains.J. Neuroendocrinol. 3:375–381.Google Scholar
  18. 18.
    M. C. Postel-Vinay, L. Belair, C. Kayser, P. Kelly, and J. Djiane (1991). Identification of prolactin and growth hormone binding proteins in rabbit milk.Proc. Natl. Acad. Sci. U.S.A. 88: 6687–6690.PubMedGoogle Scholar
  19. 19.
    M. Mercado and G. Baumann (1994). A growth hormone/prolactin-binding protein in human milk.J. Clin. Endocrinol. metabol. 79:1637–1641.Google Scholar
  20. 20.
    L. A. Ellis and M. F. Picciano (1996).In vivo andin vitro conversion of prolactin (PRL) into high molecular weight (MW) forms in milk.FASEB J. 10:553A.Google Scholar
  21. 21.
    M. Nagano, E. Chastre, A. Choquet, J. Bara, C. Gespach, and P. A. Kelly (1995). Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract.Am J. Physiol. G431–G442.Google Scholar
  22. 22.
    P. Gonnella, P. Harnatz, and Q. A. Walker (1989). Prolactin is transported across the epithelium of the jejunum and ileum of the suckling rat.J. Cell Physiol. 140:138–149.PubMedGoogle Scholar
  23. 23.
    N. S. Whitworth and C. E. Grosvenor (1978). Transfer of milk prolactin to the plasma of neonatal rats by intestinal absorption.J. Endocrinol. 79:191–199.PubMedGoogle Scholar
  24. 24.
    J. A. McCoshen and J. Barc (1985). Prolactin bioactivity following decidual synthesis and transport by amniochorion.Am. J. Obstet. Gynecol. 153:217–223.PubMedGoogle Scholar
  25. 25.
    Y. N. Sinha and W. P. Vanderlaan (1982). Effect on growth of prolactin deficiency induced in infant mice.Endocrinology 110:1871–1878.PubMedGoogle Scholar
  26. 26.
    L. A. Ellis, D. S. Grove, A. M. Mastro, and M. F. Picciano (1995). Milk prolactin (PRL) deprivation in neonates leads to hyperprolactinemia, thymic hypertrophy and atypical T and B cell characteristics.FASEB J. 9:A287 (Abstract #1665).Google Scholar
  27. 27.
    J. C. Hauth, C. R. Parker, P. C. MacDonald, J. C. Porter, and J. M. Johnston (1978). A role of fetal prolactin in lung maturation.Am. J. Obstet. Gynecol. 51:81–88.Google Scholar
  28. 28.
    A. Lucas, B. A. Baker, and T. J. Cole (1990). Plasma prolactin and clinical outcome in preterm infants.Arch. Dis. Childhood 65:977–983.Google Scholar
  29. 29.
    C. Farmer, R. S. Kensinger, and D. R. Hagen (1987). Relationship of estrone and prolactin with growth and survival of piglets to 35d of age.J. Animal Sci. 65:1034–1041.Google Scholar
  30. 30.
    G. V. Shah, S. W. Shyr, C. E. Grosvenor, and W. R. Crowley (1988). Hyperprolactinemia after neonatal prolactin deficiency in rats: Evidence for altered anterior pituitary regulation of PRL secretion.Endocrinology 122:1883–1889.PubMedGoogle Scholar
  31. 31.
    S. Shyr, W. Crowley, and C. E. Grosvenor (1986). Effect of neonatal prolactin deficiency on prepubertal tuberoinfundibular and tuberohypophyseal dopaminergic neuronal activity.Endocrinology 119:1217–1221.PubMedGoogle Scholar
  32. 32.
    D. H. Russell, K. T. Mills, F. J. Talamantes, and H. A. Bern (1988). Neonatal administration of prolactin antiserum alters the developmental pattern of T- and B-lymphocytes in the thymus and spleen of BALB/c female mice.Proc. Natl. Acad. Sci. U.S.A. 85:7404–7407.PubMedGoogle Scholar
  33. 33.
    W. W. Morgan and T. S. King (1986). Monoamine biosynthesis in hypothalamic regions of dwarf mice: Effect of replacement of deficient anterior pituitary hormones.Neuroendocrinology.42:351–356.PubMedGoogle Scholar
  34. 34.
    N. Austead, R. A. Korsack, J. D. Bergstrom, and J. Edmond (1989). Milk substitutes comparable to rats milk: their preparation, composition and impact on development and metabolism in the artificially-reared rat.Brit. J. Nutr. 61:495–518.PubMedGoogle Scholar
  35. 35.
    J. P. Hoeffler, F. R. Boockfor, and L. S. Frawley (1985). Ontogeny of prolactin cells in neonatal rats: Initial prolactin secretors also release growth hormone.Endocrinology 117:187–195.PubMedGoogle Scholar
  36. 36.
    C. J. Phelps, M. I. Romero, and D. L. Hurley (1995). Role of prolactin in developmental differentiation of tuberoinfundibular dopaminergic neurons.Rec. Prog. Hormone Res. 50:471–481.Google Scholar
  37. 37.
    L. Ellis, B. Moglia, M. Smyth, M. F. Picciano, and K. Marks (1994). Method of infant feeding influences serum prolactin (PRL) and growth hormone bioactivity.FASEB J. 8:A157.Google Scholar
  38. 38.
    M. S. Smith (1981). Role of prolactin in mammalian reproduction.Int. Rev. Physiol. 22:249–276.Google Scholar
  39. 39.
    A. Bartke (1971). The maintenance of gestation and the initiation of lactation in the mouse in the absence of pituitary prolactin.J. Reprod. Fert. 27:121–124.Google Scholar
  40. 40.
    S. D. Michael, O. Taguchi, and Y. Nishizuka (1988). Hormonal characterization of female SL/Ni mice: a small thymus gland strain exhibiting ovarian dysgenesis.J. Reprod. Immunol. 12:277–286.PubMedGoogle Scholar
  41. 41.
    W. R. Crowley, G. V. Shah, H. Watanobe, and C. E. Grosvenor (1990). Effects of neonatal exposure to estradiol on prolactin secretion and activity of the tuberoinfundibular dopamine system in young adulthood: Comparison with neonatal prolactin deficiency.J. Neuroendocrinol. 2:19–24.Google Scholar
  42. 42.
    M. Xanthou (1993). The development of the immune system. In M. Xanthou, R. Bracci, and G. Prindull (eds.),Neonatal Haemotology and Immunology II, Elsevier, Amsterdam, Netherlands, pp. 113–122.Google Scholar
  43. 43.
    I. Berczi, E. Nagy, K. Kovacs, and E. Horvath (1981). Regulation of humoral immunity in rats by pituitary hormones.Acta Endocrinol. 98:506–513.PubMedGoogle Scholar
  44. 44.
    A. I. Esquifino, M. A. Villanua, A. Szary, J. Yau, and A. Bartke (1991). Ectopic pituitary transplants restore immunocompetence in Ames dwarf mice.Acta Endocrinol. 125:67–72.PubMedGoogle Scholar
  45. 45.
    W. J. Murphy, H. Rui, and D. L. Longo (1995). Effects of growth hormone and prolactin: Immune development and function.Life Sci. 57:1–14.PubMedGoogle Scholar
  46. 46.
    D. S. Grove Bour, B. Kacsoh, and A. M. Mastro (1991). Effect of neonatal milk-prolactin deprivation on the ontogeny of the immune system.Endocrine Reg. 25:111–119.Google Scholar
  47. 47.
    A. Goldman (1993). The immune system of human milk: anti-microbial, antiinflammatory and immunomodulating properties.Pediatr. Infect. Dis. J. 12:664–671.PubMedGoogle Scholar
  48. 48.
    R. R. Gala and E. Shevach (1993). Influence of bromocriptine administration to mothers on the development of pup thymocyte and splenocyte subsets and on mitogen-induced proliferation in the mouse.Life Sci. 53:1181–1994.Google Scholar
  49. 49.
    H. Hosseinzadeh and I. Goldschneider (1993). Recent thymic emigrants in the rat express a unique antigenic phenotype and undergo post-thymic maturation in peripheral lymphoid tissues.J. Immunol. 150:1670–1679.PubMedGoogle Scholar
  50. 50.
    W. J. Murphy, S. K. Durum, and D. L. Longo (1993). Differential effects of growth hormone and prolactin on murine T cell development and function.J. Exp. Med. 178:231–236.PubMedGoogle Scholar
  51. 51.
    H. Gunes and A. M. Mastro (1996). Prolactin receptor gene expression in rat splencoytes and thymocytes from birth to adulthood.Mol. Cell. Endocrinol. (in press).Google Scholar
  52. 52.
    G. Mayrhofer and R. J. Whately (1983). Granular intraepithelial lymphocytes of the rat small intestine. I. Isolation, presence in T lymphocyte deficient rats and bone marrow origin.Int. Arch. Allergy Appl. Immunol. 71:317–327.PubMedGoogle Scholar
  53. 53.
    A. Mastro, H. Gunes, A. Reed, S. Urtishak, and J. Frankel (1995). Prolactin receptor expression by lymphoid cells of neonatal rats, downregulation by milk ingestion. Presented at the Annual Meeting of the International Society for Research on Human Milk and Lactation, Tlaxcala, Mexico.Google Scholar
  54. 54.
    J. Mainoya (1975). Further studies on the action of prolactin on ion absorption in rat jejunum.Endocrinology 96:1158–1164.PubMedGoogle Scholar
  55. 55.
    N. Krishnamra, R. Thumchai, and L. Limlomwingse (1990). Acute effect of prolactin on the intestinal calcium absorption in normal, pregnant, and lactating rats.Bone Mineral 11:31–41.Google Scholar
  56. 56.
    M. Hamosh and P. Hamosh (1977). The effect of prolactin on the lecithin content of fetal rabbit lung.J. Clin. Invest. 59:1002–1005.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Lorie A. Ellis
    • 1
  • Andrea M. Mastro
    • 2
  • Mary Frances Picciano
    • 1
  1. 1.Department of NutritionThe Pennsylvania State UniversityUniversity Park
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity Park

Personalised recommendations