European Journal of Clinical Microbiology

, Volume 5, Issue 3, pp 292–296 | Cite as

In vitro activity of carumonam (RO 17-2301) and twelve other antimicrobials against clinical isolates ofPseudomonas aeruginosa

  • U. Vurma-Rapp
  • F. -H. Kayser


Minimal inhibitory concentrations of the monobactam carumonam (RO 17-2301) and twelve other antimicrobials were determined using agar dilution against 140 recent nonreplicate clinical isolates ofPseudomonas aeruginosa.The most active drugs were ciprofloxacin, amikacin, imipenem and ceftazidime, inhibiting 96, 91, 90 und 86 percent of the strains, respectively, at or below the susceptibility threshold. The monobactams carumonam and aztreonam were active against 78 and 65 percent of the strains, respectively. Tobramycin inhibited 68 percent of the strains, and gentamicin and netilmicin 50 and 21 percent, respectively. Analysis of correlation coefficients revealed a low correlation between imipenem and the other beta-lactams and a remarkably good correlation between the beta-lactams (excepting imipenem) and the aminoglycosides.


Internal Medicine Agar Minimal Inhibitory Concentration Gentamicin Inhibitory Concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sherertz, R. J., Sarubbi, F. A.: A three-year study of nosocomial infections associated withPseudomonas aeruginosa. Journal of Clinical Microbiology 1983, 18: 160–164.PubMedGoogle Scholar
  2. 2.
    Van der Auwera, P., Schuyteneer, F.: In-vitro susceptibility ofPseudomonas aeruginosa to old and new beta-lactam antibiotics and aminoglycosides. Journal of Antimicrobial Chemotherapy 1983, 11: 511–515.PubMedGoogle Scholar
  3. 3.
    Sticht-Groh, V.: Tracing ofPseudomonas aeruginosa infection by the use of commercial antisera and pyocin production and the evaluation of the results on the basis of the chi-square test. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene (A) 1979, 244: 240–250.Google Scholar
  4. 4.
    Bergan, T.: Epidemiological typing ofPseudomonas aeruginosa. In: Brown, M. R. W. (ed.): Resistance ofPseudomonas aeruginosa. John Wiley and Sons, London 1975, p. 189–235.Google Scholar
  5. 5.
    Govan, J. R. W., Gillies, R. R.: Further studies in the pyocine typing ofPseudomonas pyocyanea. Journal of Medical Microbiology 1969, 2: 17–25.PubMedGoogle Scholar
  6. 6.
    Govan, J. R. W.: Pyocin typing ofPseudomonas aeruginosa. In: Bergan, T., Norris, J. R. (ed.): Methods in microbiology. Volume 10. Academic Press, London, 1978, p. 61–91.Google Scholar
  7. 7.
    National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Villanova, PA, NCCLS, 1985.Google Scholar
  8. 8.
    Barry, A. L., Jones, R. N., Thornsberry, C.: Cefsulodin: antibacterial activity and tentative interpretive zone standards for the disk susceptibility test. Antimicrobial Agents and Chemotherapy 1981, 20: 525–529.PubMedGoogle Scholar
  9. 9.
    Brokopp, C. D., Gomez-Lus, R., Farmer III, J. J.: Serological typing ofPseudomonas aeruginosa: use of commercial antisera and live antigens. Journal of Clinical Microbiology 1977, 5: 640–649.PubMedGoogle Scholar
  10. 10.
    Legakis, N. J., Aliferopoulou, M., Papavassiliou, J., Papapetropoulou, M.: Serotypes ofPseudomonas aeruginosa in clinical specimens in relation to antibiotic susceptibility. Journal of Clinical Microbiology 1982, 16: 458–463.PubMedGoogle Scholar
  11. 11.
    Chau, P. Y., Ling, J., Ng, W. S.: Cefoperazone against carbenicillin-resistant isolates ofPseudomonas aeruginosa: comparison with other newer cephalosporins and N-formimidoylthienamycin. Journal of Antimicrobial Chemotherapy 1983, 12: 337–345.Google Scholar
  12. 12.
    Williams, R. J., Lindridge, M. A., Said, A. A., Livermore, D. M., Williams, J. D.: National survey of antibiotic resistance inPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1984, 14: 9–16.PubMedGoogle Scholar
  13. 13.
    Righter, J.: In vitro activity of ciprofloxacin, azthreonam and ceftazidime againstSerratia marcescens andPseudomonas aeruginosa. European Journal of Clinical Microbiology 1984, 3: 368–369.CrossRefPubMedGoogle Scholar
  14. 14.
    Wiedemann, B., Machka, K., Malottke, R.: Multicenter study of the sensivity ofPseudomonas aeruginosa to antimicrobial agents. European Journal of Clinical Microbiology 1985, 4: 229–230.CrossRefPubMedGoogle Scholar
  15. 15.
    Ng, W. W. S., Chau, P. Y., Leung, Y. K., Livermore, D. M.: In vitro activities of RO 17-2301 and azthreonam compared with those of other new beta-lactam antibiotics against clinical isolates ofPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1985, 27: 872–873.PubMedGoogle Scholar
  16. 16.
    Fernandes, C. J., Stevens, D. A., Ackermann, V. P.: Comparative antibacterial activities of new beta-lactam antibiotics againstPseudomonas aeruginosa. Chemotherapy 1985, 31: 292–296.PubMedGoogle Scholar
  17. 17.
    National Committee for Clinical Laboratory Standards: Performance standards for antimicrobial disk susceptibility tests. Villanova, PA, NCCLS, 1984.Google Scholar
  18. 18.
    Livermore, D. M., Williams, R. J., Williams, J. D.: Invitro activity of MK0787 (N-formimidoyl thienamycin) againstPseudomonas aeruginosa and other gramnegative organisms and its stability to their betalactamases. Journal of Antimicrobial Chemotherapy 1981, 8: 355–362.PubMedGoogle Scholar
  19. 19.
    Tausk, F., Evans, M. E., Patterson, L. S., Federspiel, C., Stratton, C. W.: Imipenem-induced resistance to antipseudomonal beta-lactams inPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1985, 28: 41–45.PubMedGoogle Scholar
  20. 20.
    Yoshimura, F., Nikaido, H.: Diffusion of bcta-lactam antibiotics through the porin channels ofEscherichia coli K 12. Antimicrobial Agents and Chemotherapy 1985, 27: 84–92.PubMedGoogle Scholar
  21. 21.
    Livermore, D. M., Williams, R. J., Williams, J. D.: Comparison of the beta-lactamase stability and the in-vitro activity of cefoperazone, cefotaxime, cefsulodin, ceftazidime, moxalactam and ceftriaxone againstPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1981, 8: 323–331.PubMedGoogle Scholar
  22. 22.
    Livermore, D. M.: Beta-lactamases ofPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1982, 10: 168–171.PubMedGoogle Scholar
  23. 23.
    Forster, T. J.: Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiological Reviews 1983, 47: 361–409.PubMedGoogle Scholar
  24. 24.
    Rivera, M. J., Vitoria, M. A., Navarro, M., Robledano, L., Chocarro, P., Gomez Lus, R.: Hospital dissemination among gram-negative bacillus strains of an inc M plasmid encoding an AAC (3) and a TEM-1 betalactamase. Drugs under Experimental and Clinical Research 1984, 10: 789–795.Google Scholar
  25. 25.
    Jacoby, G. A., Matthew, M.: The distribution of beta-lactamase genes on plasmids found inPseudomonas. Plasmid 1979, 2: 41–47.CrossRefPubMedGoogle Scholar
  26. 26.
    Goldstein, F. W., Gutmann, L., Williamson, R., Collatz, E., Acar, J. F.: In vivo and in vitro emergence of simultaneous resistance to both beta-lactam and aminoglycoside antibiotics in a strain ofSerratia marcescens. Annales de Microbiologic (A) 1983, 134: 329–337.Google Scholar
  27. 27.
    Michael, P. R., Alford, R. H., McGee, Z. A.: Superior activity of N-formimidoyl thienamycin against gentamicin-resistantPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1981. 20: 702–704.PubMedGoogle Scholar

Copyright information

© Friedr, Vieweg & Sohn Verlagsgesellschaft mbH 1986

Authors and Affiliations

  • U. Vurma-Rapp
    • 1
  • F. -H. Kayser
    • 1
  1. 1.Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations