Microbial Ecology

, Volume 19, Issue 3, pp 291–302 | Cite as

TheGunnera symbiosis: DNA restriction fragment length polymorphism and protein comparisons ofNostoc symbionts

  • William J. Zimmerman
  • Birgitta Bergman


Cyanobacteria separated from symbiosis with several species of the angiospermGunnera were comparatively characterized and correlated with the locales and taxonomy of their host plants. All were identified as strains ofNostoc. Protein profiles and DNA restriction fragment length polymorphisms (from hybridizations with heterologousnifH andglnA probes) determined that three of the four cyanobacteria fromGunnera grown at one site in Sweden, each from a different host species, were very similar or identical. Plants of one species,G. manicata, grown in a second location at the site were infected with a different cyanobiont. Among five isolates from two species ofGunnera, collected in the same locale in New Zealand, three subgroups were documented. Isolates from three differentGunnera species grown in separate locations in the United States were each uniquely different. None of the cyanobacteria differed in the molecular weights of their glutamine synthetase and Fe-nitrogenase proteins. The diversity and accessibility of compatibleNostoc populations present in the soil micro-environment, not a critical selective factor required byGunnera, were concluded to be a major determinant in symbiont selection.


Molecular Weight United States Glutamine Host Plant Nature Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergman B, Lindblad P, Rai AN (1986) Nitrogenase in free-living and symbiotic cyanobacteria: immunoelectron-microscopic localization. FEMS Microbiol Lett 35:75–78Google Scholar
  2. 2.
    Bergman B, Rai AN (1989) TheNostoc-Nephroma symbiosis: localization, distribution pattern, and levels of key proteins involved in nitrogen and carbon metabolism of the cyanobiont. Physiol Plant 77:216–224.Google Scholar
  3. 3.
    Bonnett, HT (1990) TheNostoc-Gunnera association. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Inc, Boca Raton, FL, pp. 161–171.Google Scholar
  4. 4.
    Bonnett HT, Silvester WB (1981) Specificity in theGunnera-Nostoc endosymbiosis. New Phytol 89:121–128Google Scholar
  5. 5.
    Bowyer JW, Skerman VBD (1968) Production of axenic cultures of soil-borne and endophytic blue-green algae. J Gen Microbiol 54:299–306PubMedGoogle Scholar
  6. 6.
    Braun-Howland EB, Lindblad P, Nierzwicki-Bauer SA, Bergman B (1988) Dinitrogenase reductasc (Fe-protein) of nitrogenase in the cyanobacterial symbionts of threeAzolla species: localization and sequence of appearance during heterocyst differentiation. Planta 176:319–332CrossRefGoogle Scholar
  7. 7.
    Duckett JG, Prasad AKSK, Davies DA, Walker S (1977) A cytological analysis of theNostoc-bryophyte relationship. New Phytol 79:349–362Google Scholar
  8. 8.
    Enderlin CS, Meeks JC (1983) Pure culture and reconstitution of theAnthoceros-Nostoc symbiotic association. Planta 158:157–165Google Scholar
  9. 9.
    Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13CrossRefPubMedGoogle Scholar
  10. 10.
    Feinberg AP, Vogelstein B (1984) Addendum. “A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.” Anal Biochem 137:266–267CrossRefPubMedGoogle Scholar
  11. 11.
    Fisher R, Tuli R, Haselkorn R (1981) A cloned cyanobacterial gene for glutamine synthetase functions inEscherichia coli, but the enzyme is not adenylylated. Proc Natl Acad Sci USA 78:3393–3397PubMedGoogle Scholar
  12. 12.
    Franche C, Cohen-Bazire G. (1987) Evolutionary divergence in thenif H.D.K. gene region among nine symbioticAnabaena azollae and betweenAnabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3:159–178Google Scholar
  13. 13.
    Grilli Caiola M (1972) Cell morphology of the blue-green algae under culture conditions fromCycas revoluta isolated. I. Light microscope observations. Caryologia 25:137–146Google Scholar
  14. 14.
    Grilli Caiola M (1980) On the phycobionts of the cycad coralloid roots. New Phytol 85:537–544Google Scholar
  15. 15.
    Grobbelaar N, Scott WE, Hattingh W, Marshall J (1987) The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. S Afr J Bot 53:111–118Google Scholar
  16. 16.
    Harder R (1917) Ernahrungsphysiologische Untersuchungen an Cyanophyceen, hauptsachlich dem endophytischenNostoc punctiforme. Zeit Botan 9:145–242Google Scholar
  17. 17.
    International Rice Research Institute (1987) Annual report for 1986. IRRI, Los Baños, PhilippinesGoogle Scholar
  18. 18.
    Lindblad P, Haselkorn R, Bergman B, Nierzwicki-Bauer SA (1989) Comparison of DNA restriction fragment length polymorphisms ofNostoc strains in and from cycads. Arch Microbiol 152:20–24CrossRefPubMedGoogle Scholar
  19. 19.
    Meeks JC, Joseph CM, Haselkorn R (1988) Organization of thenif genes in cyanobacteria in symbiotic association withAzolla andAnthoceros. Arch Microbiol 150:61–71CrossRefPubMedGoogle Scholar
  20. 20.
    Mevarech M, Rice D, Haselkorn R (1980) Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci USA 77:6476–6480Google Scholar
  21. 21.
    Neumann von D, Ackerman M, Jacob F (1970) Zur feinstructur der endophytischen cyanophyceen vonGunnera chilensis Lam. Biochem. Physiol Pflanz 161:483–498Google Scholar
  22. 22.
    Orr J, Haselkorn R (1981) Kinetic and inhibition studies of glutamine synthetase from the cyanobacteriumAnabaena 7120. J Biol Chem 256:13099–13104PubMedGoogle Scholar
  23. 23.
    Orr J, Haselkorn R (1982) Regulation of glutamine synthetase activity and synthesis in free-living and symbioticAnabaena spp. J Bacteriol 152:626–635PubMedGoogle Scholar
  24. 24.
    Rice D, Mazur BJ, Haselkorn R (1982) Isolation and physical mapping of nitrogen fixation genes from the cyanobacteriumAnabaena 7120. J Biol Chem 257:13157–13163PubMedGoogle Scholar
  25. 25.
    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J. Gen Microbiol 111:1–71Google Scholar
  26. 26.
    Rodgers GA, Stewart WDP (1977) The cyanophyte-hepatic symbiosis. I. Morphology and physiology. New Phytol 78:441–458Google Scholar
  27. 27.
    Silvester WB (1976) Endophyte adaptation inGunnera-Nostoc symbiosis. In: Nutman PS (ed) International Biological Programme, No. 7. Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, pp 521–541Google Scholar
  28. 28.
    Silvester WB, McNamara PJ (1976) The infection process and ultrastructure of theGunnera-Nostoc symbiosis. New Phytol 77:135–141Google Scholar
  29. 29.
    Silvester WB, Smith DR (1969) Nitrogen fixation byGunnera-Nostoc symbiosis. Nature (Lond) 224:1321Google Scholar
  30. 30.
    Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, LondonGoogle Scholar
  31. 31.
    Smith RL, van Baalen C, Tabita FR (1987) Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacteriumAnabaena sp. CA. J Bacteriol 169:2537–2542PubMedGoogle Scholar
  32. 32.
    Stacey G, Tabita FR, van Baalen C (1977) Nitrogen and ammonia assimilation in the cyanobacteria: purification of glutamine synthetase fromAnabaena sp. strain CA. J Bacteriol 132:596–603PubMedGoogle Scholar
  33. 33.
    Stewart WDP, Rowell P, Rai AN (1983) Cyanobacteria-eukaryotic plant symbiosis. Ann Microbiol (Inst Pasteur) 134B:205–228Google Scholar
  34. 34.
    Thiel T (1988) Phosphate transport and arsenate resistance in the cyanobacteriumAnabaena variabilis. J Bacteriol 170:1143–1147PubMedGoogle Scholar
  35. 35.
    Towata EM (1985) Morphometric and cytochemical ultrastructural analyses of theGunnera kaalensis/Nostoc symbiosis. Bot Gaz 146:293–301CrossRefGoogle Scholar
  36. 36.
    Tumer NE, Robinson SJ, Haselkorn R (1983) Different promoters for theAnabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature (Lond) 306:337–342CrossRefGoogle Scholar
  37. 37.
    von Reinke J (1873) Morphologische Abhandlungen. Wilhelm Engelmann, LeipzigGoogle Scholar
  38. 38.
    Winter G (1935) Uber die Assimilation des Luftstickstoffs durch endophytische Blaualgen. Beit Biol Pflanz 23:295–335Google Scholar
  39. 39.
    Zimmerman WJ, Rosen BH, Lumpkin TA (1989) Enzymatic, lectin, and morphological characterization and classification of presumptive cyanobionts fromAzolla Lam. New Phytol 113:497–503Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • William J. Zimmerman
    • 1
  • Birgitta Bergman
    • 2
  1. 1.Department of Agronomy & SoilsWashington State UniversityPullmanUSA
  2. 2.Department of Physiological BotanyUniversity of UppsalaUppsalaSweden

Personalised recommendations