, Volume 25, Issue 1, pp 47–57 | Cite as

The negative binomial distribution as a trend distribution for circulation data in flemish public libraries

  • Marie-Jeanne Leemans
  • Marleen Maes
  • R. Rousseau
  • Christel Ruts


Based on data collected by the authors in Flemish public libraries, we show how the negative binomial distribution (NBD) can be used as a trend distribution for library circulation data. Although actual data show more variation than simple statistics can explain, we recommend the use of the NBD for practical, managerial purposes. As a consequence we also recommend the teaching of these methods in introductory library management courses.


Actual Data Binomial Distribution Simple Statistic Negative Binomial Distribution Public Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.K. Ravichandra Rao, Document and user distributions,Library Science with a Slant to Documentation, 19 (1982) 69–96.Google Scholar
  2. 2.
    Q.L. Burrell, Alternative models for library circulation data,Journal of Documentation, 38 (1982) 1–13.Google Scholar
  3. 3.
    Q.L. Burrell, V.R. Cane, The analysis of library data (with discussion),Journal of the Royal Statistical Society A, 145 (1982) 439–471.Google Scholar
  4. 4.
    J. Tague, J. Farradane, Estimation and reliability of retrieval effectiveness measures,Information Processing and Management, 14 (1978) 1–16.CrossRefGoogle Scholar
  5. 5.
    E. Gelman, H.S. Sichel, Library book circulation and the beta-binomial distribution,Journal of the American Society for Information Science, 38 (1987) 4–12.CrossRefGoogle Scholar
  6. 6.
    K.W.R. Brownsey, Q.L. Burrell, Library circulation distributions: some observations on the PLR sample,Journal of Documentation, 42 (1986) 22–45.Google Scholar
  7. 7.
    W.E. McGrath, Parameters for cluster analysis of library overlap. In:Informetrics 87/88,L. Egghe,R. Rousseau (Eds), Elsevier, Amsterdam, 1988, p. 121–132.Google Scholar
  8. 8.
    A. Schubert, W. Glänzel, Statistical reliability of comparisons based on the citation impact of scientific publications,Scientometrics, 5 (1988) 59–74.Google Scholar
  9. 9.
    Q.L. Burrell, A simple model for library loans,Journal of Documentation, 36 (1980) 115–132.Google Scholar
  10. 10.
    I. Ajiferuke, J. Tague, A model for full circulation data. In:Informetrics 89/90,L. Egghe,R. Rousseau (Eds), Elsevier, Amsterdam. 1990, p. 1–16.Google Scholar
  11. 11.
    M.T. Kinnucan, D. Wolfram, Direct comparison of bibliometric models,Information Processing & Management, 26 (1990) 777–790.Google Scholar
  12. 12.
    Q.L. Burrell, Using the gamma-Poisson model to predict library circulations,Journal of the American Society for Information Science, 41 (1990) 164–170.CrossRefGoogle Scholar
  13. 13.
    L. Egghe, R. Rousseau,Introduction to Informetrics, Elsevier, Amsterdam, 1990.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • Marie-Jeanne Leemans
    • 1
  • Marleen Maes
    • 1
  • R. Rousseau
    • 1
  • Christel Ruts
    • 1
  1. 1.Speciale Licentie Informatie — en Bibliotheekwetenschap University of Antwerp (UIA)Wilrijk(Belgium)

Personalised recommendations