Advertisement

Calcified Tissue Research

, Volume 13, Issue 1, pp 113–129 | Cite as

Cell kinetics and morphology of the growth plate in the normal and hypophysectomized rat

  • K. -G. Thorngren
  • L. I. Hansson
Original Papers

Abstract

The width of the proximal growth plate of the tibia, its undifferentiated and columnar zone and the size of the degenerative cell close to the metaphysis, were determined in normal and hypophysectomized Sprague-Dawley rats. The cell production in the growth plate was calculated from the longitudinal bone growth determined with oxytetracycline and the degenerative cell size. It was found that the decrease in longitudinal bone growth with increasing age and after hypophysectomy, is due partly to a decrease in cell production, and partly to a decrease in degenerative cell size in the growth plate. The influence of cell production and thus the mitotic activity predominates.

Key words

Kinetics Growth Epiphyses Hypophysectomy Rat 

Résumé

La largeur de la métaphyse tibiale, la zone indifférenciée, la zone sériée et les cellules en dégénerescence ont été observées chez des rats Sprague-Dawley normaux et hypophysectomisés. La production cellulaire de la métaphyse est déterminée sur la base de la croissance osseuse longitudinale déterminée par l'oxytétracycline et la taille des cellules en dégénérescence. La diminution de la croissance osseuse longitudinale, en fonction de l'augmentation de l'âge et après hypophysectomie, est due partiellement, à la diminution de production cellulaire et partiellement à une décroissance de la taille des cellules en dégénérescence dans la métaphyse. L'influence de la production cellulaire et de l'activité mitotique prédomine.

Zusammenfassung

Die Breite der proximalen Wachstumsplatte der Tibia, deren undifferenzierter und säulenförmiger Zone und die Größe der nahe bei der Metaphyse auftretenden degenerativen Zellen wurden in normalen und hypophysektomierten Sprague-Dawley-Ratten bestimmt. Die Zellproduktion in der Wachstumsplatte wurde aus dem longitudinalen Knochenwachstum berechnet, welches mittels Oxytetracyclin und der Größe der degenerativen Zellen bestimmt wurde. Es wurde festgestellt, daß die Abnahme des longitudinalen Knochenwachstums bei zunehmendem Alter und nach Hypophysektomie zum Teil einem Rückgang in der Zellproduktion, zum Teil einer Verminderung der Größe der degenerativen Zellen in der Wachstumsplatte zuzuschreiben ist. Der Einfluß der Zellproduktion, und somit der mitotischen Aktivität, herrscht vor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, R. M.: Effects of starvation, septicaemia and chronic illnes on the growth cartilage plate and metaphysis of the immature rat. J. Anat. (Lond.)93, 123–134 (1959)Google Scholar
  2. Anderson, D. R.: The ultrastructure of elastic and hyaline cartilage of the rat. Amer. J. Anat.114, 403–433 (1964)PubMedGoogle Scholar
  3. Asling, C. W., Nelson, L. E.: Autoradiographic localization of growth hormone-induced proliferation in bone and certain soft tissues. In: Radioisotopes and bone, eds Mc Lean, F. C., Lacroix, P., Budy, A. M., p. 191–195. Oxford: Blackwell Scientific Publications 1962Google Scholar
  4. Daughaday, W. H., Reeder, C.: Synchronous activation of DNA synthesis in hypophysectomized rat cartilage by grwoth hormone. J. Lab. clin. Med.68, 357–368 (1966)PubMedGoogle Scholar
  5. Dixon, B.: Cartilage cell proliferation in the tail-vertebrae of new-born rats. Cell Tiss. Kinet4, 21–30 (1971)Google Scholar
  6. Fahmy, A.: Problems involved in cell regulation. In: Bone biodynamics, ed. Frost, H. M., p. 386–388. Boston: Little and Brown 1964Google Scholar
  7. Geschwind, I. I., Li, C. H.: The tibia test for growth hormone. In: The hypophyseal growth hormone, nature and actions, eds. Smith, R. W., Gaebler, O. H., Long, C. N. H., p. 28–58. New York-Toronto-London: McGraw-Hill Book Co. 1955Google Scholar
  8. Ham, A. W.: Bone. In: Histology, 6th ed., p. 388–460. Philadelphia-Toronto: J. B. Lippincott Co. 1969Google Scholar
  9. Hansson, L. I.: Daily growth in length of diaphysis measured by oxytetracycline in rabbit normally and after medullary plugging. Acta orthop. scand., Suppl.101 (1967)Google Scholar
  10. Hansson, L. I., Menander-Sellman, K., Stenström, A., Thorngren, K.-G.: Rate of normal longitudinal bone growth in the rat. Calcif. Tis. Res.10, 238–251 (1972)Google Scholar
  11. Hansson, L. I., Stenström, A., Thorngren, K.-G.: Diurnal variation of longitudinal bone growth rabbit. Acta orthop. scand. (in press 1973)Google Scholar
  12. Herbai, G.: Effect of age, sex, starvation, hypophysectomy and growth hormone from several species on the organic sulphate pool and on the incorporation in vivo of sulphate into mouse costal cartilage. Acta endocr. (Kbh.)66, 333–351 (1971).Google Scholar
  13. Kember, N. F.: Cell division in endochondral ossification. A study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J. Bone Jt Surg. B42, 824–839 (1960)Google Scholar
  14. Kember, N. F.: Cell population kinetics of bone growth: The first ten years of autoradiographic studies with tritiated thymidine. Clin. Orthop.76, 213–230 (1971a)PubMedGoogle Scholar
  15. Kember, N. F.: Growth hormone and cartilage cell division in hypophysectomized rats. Cell Tiss. Kinet.4, 193–199 (1971b)Google Scholar
  16. Kember, N. F.: Comparative patterns of cell division in epiphyseal cartilage plates in the rat. J. Anat. (Lond.)111, 137–142 (1972a)Google Scholar
  17. Kember, N. F.: Hydroxyurea and differentiation of growth cartilage cells in the rat. Cell Tiss. Kinet.,5, 199–201 (1972b)Google Scholar
  18. Kember, N. F., Walker, K. V. R.: Control of bone growth in rats. Nature (Lond.)229, 428–429 (1971)Google Scholar
  19. Leblond, C. P., Greulich, R. C.: Autoradiographic studies of bone formation and growth. In: The biochemistry and physiology of bone, ed. Bourne, G. H., p. 325–358. New York: Academic Press Inc. 1956Google Scholar
  20. Leblond, C. P., Weinstock, M.: Radioautographic studies on bone formation. In: The biochemistry and physiology of bone, vol. III, development and growth, ed. Bourne, G. H., p. 181–200. New York-London: Academic Press 1971Google Scholar
  21. Petko, M., Földes, I., Locsey, L.: Fluorescence histological study of bone growth in the rat's epiphyseal cartilage. Acta morph. Acad. Sci. hung.18, 349–357 (1970)Google Scholar
  22. Rang, M.: The growth plate and its disorders, p. 30–36. Edinburgh-London: Livingstone 1969Google Scholar
  23. Rigal, W. M.: The use of triated thymidine in studies of chondrogenesis. In: Radioisotopes and bone, p. 197–219, eds. McLean, F. C., Lacroix, P., and Budy, A. M. Oxford: Blackwell Scientific Publications 1962Google Scholar
  24. Rönning, O., Koski, K.: Observations on the histology and histochemistry of growth cartilages in young rats. Dent. Practit.17, 448–450 (1967)Google Scholar
  25. Simmons, D. J.: Circadian mitotic rhythm in epiphyseal cartilage. Nature (Lond.)202, 906–907 (1964)Google Scholar
  26. Simpson, M. E., Asling, C. W., Evans, H. M.: Some endocrine influences on skeletal growth and differentiation. Yale J. Biol. Med.23, 1–27 (1950)PubMedGoogle Scholar
  27. Sissons, H. A.: Experimental study of the effect of local irradiation on bone growth. In: Progress in radiobiology, Proc. fourth intern. conf. radiobiology, p. 436–448, eds. Mitchell, J. S., Holmes, B. E., and Smith, C. L. Edinburgh-London: Oliver and Boyd 1955Google Scholar
  28. Sissons, H. A.: The growth of bone. In: The biochemistry and physiology of bone, ed. Bourne, G. H., p. 443–474. New York: Academic Press Inc. 1956Google Scholar
  29. Sissons, H. A.: The growth of bone. In: The biochemistry and physiology of bone, vol. III, development and growth, ed. Bourne, G. H., p. 145–180. New York-London: Academic Press 1971Google Scholar
  30. Smeenk, D., Sluys Veer, J. van der, Birkenhäger, J. C., Heul, R. O. van der: Rate of calcification of the proximal tibial epiphyseal cartilage of rats studied with the aid of tetracycline labelling. In: Proc. Second European Symposium on Calcified Tissues, eds. Richelle, L. J., and Dallemagne, M. J., p. 199–205. Liège: collection des Colloques de l'Université de Liège 1965Google Scholar
  31. Taillard, W., Morscher, E.: Die Beinlängenunterschiede, p. 151. Basel-New York: Karger 1965Google Scholar
  32. Tapp, E.: Tetracycline labelling methods of measuring the growth of bones in the rat. J. Bone Jt Surg. B48, 517–525 (1966)Google Scholar
  33. Thorngren, K. G., Hansson, L. I., Menander-Sellman, K., Stenström, A.: Effect of hypophysectomy on longitudinal bone growth in the rat. Calcif. Tiss. Res.11, 281–300 (1973)Google Scholar
  34. Trueta, J., Morgan, J. D.: The vascular contribution to osteogenesis, I. Studies by the injection method. J. Bone Jt Surg. B42, 97–109 (1960)Google Scholar
  35. Walker, K. V. R., Kember, N. F.: Cell kinetics of growth cartilage in the rat tibia. I. Measurements in young male rats. Cell Tiss. Kinet.5, 401–408 (1972a)Google Scholar
  36. Walker, K. V. R., Kember, N. F.: Cell kinetics of growth cartilage in the rat tibia. II. Measurements during ageing. Cell Tiss. Kinet.5, 409–419 (1972b)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • K. -G. Thorngren
    • 1
    • 2
  • L. I. Hansson
    • 1
    • 2
  1. 1.Departments of HistologyUniversity of LundLundSweden
  2. 2.Orthopaedic SurgeryUniversity of LundLundSweden

Personalised recommendations